Suppr超能文献

蝎毒α-毒素的模块化组织反映了其靶标(钠离子通道)的结构域结构。

Modular organization of α-toxins from scorpion venom mirrors domain structure of their targets, sodium channels.

机构信息

M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.

出版信息

J Biol Chem. 2013 Jun 28;288(26):19014-27. doi: 10.1074/jbc.M112.431650. Epub 2013 May 1.

Abstract

To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Na(v)s is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Na(v)s suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Na(v)s. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Na(v)s.

摘要

为了在进化的“军备竞赛”中取得成功,蝎子等有毒动物会产生多种神经毒素,这些毒素被选择用来作用于猎物的神经系统靶点。蝎子 α-毒素会影响昆虫和/或哺乳动物电压门控钠离子通道(Na(v)s),从而改变肌肉和神经元的兴奋性。尽管已知有 100 多种 α-毒素,并且其中一些已经被详细研究,但它们与 Na(v)s 相互作用的分子机制仍知之甚少。在这里,我们采用了广泛的分子动力学模拟和α-毒素分子表面疏水性/亲水性分布的空间映射。结果表明,尽管这些毒素体积小且结构相对较硬,但从结构、功能和进化的角度来看,它们具有模块化组织。更保守和刚性的“核心模块”辅以相对灵活和多变的“特异性模块”(SM),决定了α-毒素活性的分类(哺乳动物与昆虫)特异性。我们进一步表明,哺乳动物毒素中的 SM 比昆虫毒素中的更具柔韧性和亲水性。对 Na(v)s 细胞外环的序列相关分析进一步表明,α-毒素使用两个模块来识别通道。我们提出核心模块结合电压感应域 IV,而更通用的 SM 与 Na(v)s 重复 I 的孔域相互作用。这些发现证实并扩展了之前报道的关于毒素不同功能表位的假说。实际上,我们提出毒素的模块化结构是为了与 Na(v)s 的结构域架构相匹配而进化的。

相似文献

引用本文的文献

3
Potassium channel blocker crafted by α-hairpinin scaffold engineering.由α-发夹素支架工程构建的钾通道阻滞剂。
Biophys J. 2021 Jun 15;120(12):2471-2481. doi: 10.1016/j.bpj.2021.04.020. Epub 2021 Apr 29.
10
Target-Driven Evolution of Scorpion Toxins.蝎毒素的靶向驱动进化
Sci Rep. 2015 Oct 7;5:14973. doi: 10.1038/srep14973.

本文引用的文献

10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验