Suppr超能文献

登革热病毒在 37°C 温度下暴露时的结构变化。

Structural changes in dengue virus when exposed to a temperature of 37°C.

机构信息

Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore.

出版信息

J Virol. 2013 Jul;87(13):7585-92. doi: 10.1128/JVI.00757-13. Epub 2013 May 1.

Abstract

Previous binding studies of antibodies that recognized a partially or fully hidden epitope suggest that insect cell-derived dengue virus undergoes structural changes at an elevated temperature. This was confirmed by our cryo-electron microscopy images of dengue virus incubated at 37°C, where viruses change their surface from smooth to rough. Here we present the cryo-electron microscopy structures of dengue virus at 37°C. Image analysis showed four classes of particles. The three-dimensional (3D) map of one of these classes, representing half of the imaged virus population, shows that the E protein shell has expanded and there is a hole at the 3-fold vertices. Fitting E protein structures into the map suggests that all of the interdimeric and some intradimeric E protein interactions are weakened. The accessibility of some previously found cryptic epitopes on this class of particles is discussed.

摘要

先前针对识别部分或完全隐藏表位的抗体的结合研究表明,在高温下,昆虫细胞来源的登革热病毒会发生结构变化。我们对在 37°C 孵育的登革热病毒进行低温电子显微镜观察,结果证实了这一点,在该温度下,病毒表面从光滑变为粗糙。在这里,我们展示了在 37°C 下的登革热病毒低温电子显微镜结构。图像分析显示出四类颗粒。其中一类颗粒的三维(3D)图谱代表了所成像病毒群体的一半,表明 E 蛋白外壳已扩展,并且在 3 倍顶点处有一个孔。将 E 蛋白结构拟合到图谱中表明,所有二聚体间和一些单体间的 E 蛋白相互作用都减弱了。本文还讨论了该颗粒类别上一些先前发现的隐匿表位的可及性。

相似文献

1
Structural changes in dengue virus when exposed to a temperature of 37°C.
J Virol. 2013 Jul;87(13):7585-92. doi: 10.1128/JVI.00757-13. Epub 2013 May 1.
2
Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins.
Nat Struct Mol Biol. 2008 Mar;15(3):312-7. doi: 10.1038/nsmb.1382. Epub 2008 Feb 10.
3
Conformational changes of the flavivirus E glycoprotein.
Structure. 2004 Sep;12(9):1607-18. doi: 10.1016/j.str.2004.06.019.
4
Dengue structure differs at the temperatures of its human and mosquito hosts.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6795-9. doi: 10.1073/pnas.1304300110. Epub 2013 Apr 8.
5
Obstruction of dengue virus maturation by Fab fragments of the 2H2 antibody.
J Virol. 2013 Aug;87(16):8909-15. doi: 10.1128/JVI.00472-13. Epub 2013 Jun 5.
6
Dengue virus purification and sample preparation for cryo-electron microscopy.
Methods Mol Biol. 2014;1138:41-52. doi: 10.1007/978-1-4939-0348-1_4.
7
Structure of acidic pH dengue virus showing the fusogenic glycoprotein trimers.
J Virol. 2015 Jan;89(1):743-50. doi: 10.1128/JVI.02411-14. Epub 2014 Oct 29.
8
Dengue virus: two hosts, two structures.
Nature. 2013 May 23;497(7450):443-4. doi: 10.1038/497443a.
9
Conformational changes in intact dengue virus reveal serotype-specific expansion.
Nat Commun. 2017 Feb 10;8:14339. doi: 10.1038/ncomms14339.

引用本文的文献

1
Evolution and adaptation of dengue virus in response to high-temperature passaging in mosquito cells.
Virus Evol. 2025 Apr 24;11(1):veaf016. doi: 10.1093/ve/veaf016. eCollection 2025.
3
: A bacterial weapon against dengue fever- a narrative review of risk factors for dengue fever outbreaks.
New Microbes New Infect. 2025 Mar 8;65:101578. doi: 10.1016/j.nmni.2025.101578. eCollection 2025 Jun.
4
Temperature impacts SARS-CoV-2 spike fusogenicity and evolution.
mBio. 2024 Apr 10;15(4):e0336023. doi: 10.1128/mbio.03360-23. Epub 2024 Feb 27.
5
Development of virus-like particles with inbuilt immunostimulatory properties as vaccine candidates.
Front Microbiol. 2023 Jun 7;14:1065609. doi: 10.3389/fmicb.2023.1065609. eCollection 2023.
7
The ganglioside GM1a functions as a coreceptor/attachment factor for dengue virus during infection.
J Biol Chem. 2022 Nov;298(11):102570. doi: 10.1016/j.jbc.2022.102570. Epub 2022 Oct 7.
9
Decoding the Role of Temperature in RNA Virus Infections.
mBio. 2022 Oct 26;13(5):e0202122. doi: 10.1128/mbio.02021-22. Epub 2022 Aug 18.
10
A fatal case of dengue hemorrhagic fever associated with dengue virus 4 (DENV-4) in Brazil: genomic and histopathological findings.
Braz J Microbiol. 2022 Sep;53(3):1305-1312. doi: 10.1007/s42770-022-00784-4. Epub 2022 Jul 2.

本文引用的文献

1
Cryo-EM structure of the mature dengue virus at 3.5-Å resolution.
Nat Struct Mol Biol. 2013 Jan;20(1):105-10. doi: 10.1038/nsmb.2463. Epub 2012 Dec 16.
2
Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope.
PLoS Pathog. 2012;8(10):e1002930. doi: 10.1371/journal.ppat.1002930. Epub 2012 Oct 4.
3
Capturing a virus while it catches its breath.
Structure. 2012 Feb 8;20(2):200-2. doi: 10.1016/j.str.2012.01.014.
4
Mechanism of dengue virus broad cross-neutralization by a monoclonal antibody.
Structure. 2012 Feb 8;20(2):303-14. doi: 10.1016/j.str.2012.01.001. Epub 2012 Jan 26.
5
A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus.
PLoS Pathog. 2011 Jun;7(6):e1002111. doi: 10.1371/journal.ppat.1002111. Epub 2011 Jun 30.
7
Capturing a flavivirus pre-fusion intermediate.
PLoS Pathog. 2009 Nov;5(11):e1000672. doi: 10.1371/journal.ppat.1000672. Epub 2009 Nov 26.
8
Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody.
EMBO J. 2009 Oct 21;28(20):3269-76. doi: 10.1038/emboj.2009.245. Epub 2009 Aug 27.
9
Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins.
Nat Struct Mol Biol. 2008 Mar;15(3):312-7. doi: 10.1038/nsmb.1382. Epub 2008 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验