Haartman Institute, Department of Bacteriology and Immunology and Immunobiology Research Program, University of Helsinki, Helsinki, Finland.
PLoS Pathog. 2013;9(4):e1003308. doi: 10.1371/journal.ppat.1003308. Epub 2013 Apr 18.
To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19-20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a "superevasion site."
为了引起感染,微生物需要逃避宿主防御系统,其中之一是进化古老且重要的先天免疫途径,即补体替代途径。它可以攻击各种靶标,并通过血浆补体调节因子 H (FH) 在血浆和宿主细胞中受到紧密控制。FH 通过结构域 20 同时结合肝素或糖胺聚糖等宿主细胞表面结构,以及通过结构域 19 结合主要补体调理素 C3b。许多致病性微生物通过招募宿主 FH 来保护自己免受补体的侵害。我们分析了不同微生物如何以及为何通过结构域 19-20 (FH19-20) 结合 FH。我们使用 FH19-20 点突变体的选择来揭示几种微生物蛋白和整个微生物(流感嗜血杆菌、百日咳博德特氏菌、铜绿假单胞菌、肺炎链球菌、白色念珠菌、伯氏疏螺旋体和赫姆斯疏螺旋体)的结合位点。我们表明,所有研究的微生物都使用位于结构域 20 一侧的相同结合区域。肝素抑制 FH 与微生物蛋白的结合,表明共同的微生物结合位点与 FH 与宿主细胞有效结合所需的肝素位点重叠。令人惊讶的是,微生物蛋白增强了 FH19-20 与 C3b 的结合,并下调了补体激活。我们表明,这是由微生物蛋白、FH 和 C3b 之间形成的三部分复合物引起的。在这项研究中,我们揭示了代表不同门的七种微生物利用 FH 结构域 20 上的共同结合位点来逃避补体。通过该位点的结合不仅模拟了宿主细胞的糖胺聚糖,而且还通过形成三部分复合物的新机制增强了 FH 在微生物表面上的功能。这是一个独特的例子,表明通过利用“超级逃逸位点”,重要病原体的免疫逃避功能得到了增强,这是趋同进化的结果。