Suppr超能文献

血浆蛋白质组学分析揭示了感染后指示疾病阶段的动态途径和潜在生物标志物。

Proteomic analysis of plasma unravels dynamic pathways and potential biomarkers indicating disease stages following infection.

作者信息

Zhou Zonglei, Tian Jie, He Yuying, Xiong Haiyan, Wang Weibing

机构信息

School of Public Health, Shanghai Institue of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.

Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.

出版信息

mSystems. 2025 Jul 30:e0061625. doi: 10.1128/msystems.00616-25.

Abstract

Tuberculosis (TB) stages depend greatly on the interaction between () and the host response. As a non-negligible source of active tuberculosis (ATB), individuals with latent infection (LTBI) are insidious and hard to be detected due to limited biomarkers. Further insight into the pathogenic mechanisms associated with heterogeneous clinical outcomes after infection benefits the prevention and control of TB epidemics. Therefore, this study employed four-dimensional data-independent acquisition to quantify the expression level of plasma proteins from healthy controls (HC), LTBI, and ATB, with 15 participants in each group. Key proteins related to TB stages were further assayed using parallel reaction monitoring (PRM) for validation in an independent cohort, with a sample size of 20 individuals per group. Differential abundance analyses showed a notable increase in the number of differentially expressed proteins (DEPs) following infection, mainly involving carbohydrate catabolism, metabolism of cholesterol and lipid, immune response and inflammation, and complement and coagulation cascades. Protein-protein interaction network suggested similar functional enrichment patterns as aforementioned for core DEPs. Weighted gene co-expression network analyses identified six modules, among which the brown module significantly correlated with TB stages. Hub proteins in the brown module were enriched in lipid metabolism and acute-phase response. Furthermore, PRM protein quantification revealed that complement factor H (area under receiver operating characteristic curves [AUC] = 0.708) had a better performance in differentiating LTBI and HC than C4B (AUC = 0.625), while C4B (AUC = 0.917), MBL2 (AUC = 0.887), and SAA1 (AUC = 0.875) were helpful in differentiating ATB and HC. Also, SAA1 (AUC = 0.917) and matrix Gla protein (AUC = 0.905) favored the discrimination of ATB from LTBI. Our work probes into the hub plasma proteins and pathways associated with disease stages following infection, providing critical implications on the diagnosis of TB stages.IMPORTANCEDistinct prognostic outcomes following () infection result from host-pathogen interactions, while the response mechanisms underlying such heterogeneous phenotypes are far from understood. Through four-dimensional data-independent acquisition and parallel reaction monitoring, our study linked specific plasma proteomic profiles to various tuberculosis (TB) stages and corroborated relevant pathways under various disease conditions. Of identified core proteins, complement factor H formed a diagnostic classifier that distinguished latent infection from healthy controls with good performance, and we also identified C4B, MBL2, SAA1, and matrix Gla protein as potential proteomic signatures of active tuberculosis. Additionally, this study further highlighted the critical role of carbohydrate and lipid metabolism, immunological responses, and blood coagulation in TB pathogenesis. Taken together, our findings feature a dynamic landscape of plasma proteome following infection and provide additional evidence on plasma biomarkers for TB diagnosis.

摘要

结核病(TB)的阶段很大程度上取决于()与宿主反应之间的相互作用。作为活动性结核病(ATB)不可忽视的来源,潜伏感染(LTBI)个体具有隐匿性,由于生物标志物有限而难以检测。进一步深入了解感染后与异质性临床结局相关的致病机制,有助于结核病流行的预防和控制。因此,本研究采用四维数据非依赖采集法对健康对照(HC)、LTBI和ATB患者的血浆蛋白表达水平进行定量分析,每组15名参与者。使用平行反应监测(PRM)进一步检测与结核病阶段相关的关键蛋白,以便在一个独立队列中进行验证,每组样本量为20人。差异丰度分析显示,感染后差异表达蛋白(DEP)的数量显著增加,主要涉及碳水化合物分解代谢、胆固醇和脂质代谢、免疫反应和炎症以及补体和凝血级联反应。蛋白质-蛋白质相互作用网络表明,核心DEP的功能富集模式与上述相似。加权基因共表达网络分析确定了六个模块,其中棕色模块与结核病阶段显著相关。棕色模块中的枢纽蛋白在脂质代谢和急性期反应中富集。此外,PRM蛋白定量显示,补体因子H(受试者工作特征曲线下面积[AUC]=0.708)在区分LTBI和HC方面比C4B(AUC=0.625)表现更好,而C4B(AUC=0.917)、MBL2(AUC=0.887)和SAA1(AUC=0.875)有助于区分ATB和HC。此外,SAA1(AUC=0.917)和基质Gla蛋白(AUC=0.905)有利于区分ATB和LTBI。我们的工作探究了感染后与疾病阶段相关的枢纽血浆蛋白和途径,为结核病阶段的诊断提供了关键启示。

重要性

感染()后不同的预后结果源于宿主-病原体相互作用,而这种异质性表型背后的反应机制尚不清楚。通过四维数据非依赖采集和平行反应监测,我们的研究将特定的血浆蛋白质组学特征与各种结核病(TB)阶段联系起来,并证实了不同疾病状态下的相关途径。在已鉴定的核心蛋白中,补体因子H形成了一个诊断分类器,能够很好地区分潜伏感染和健康对照,我们还鉴定出C4B、MBL2、SAA1和基质Gla蛋白是活动性结核病的潜在蛋白质组学特征。此外,本研究进一步强调了碳水化合物和脂质代谢、免疫反应以及血液凝固在结核病发病机制中的关键作用。综上所述,我们的研究结果描绘了感染后血浆蛋白质组的动态图景,并为结核病诊断的血浆生物标志物提供了更多证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验