An Xinming, Yang Qing, Bentler Peter M
SAS Institute Inc., Cary, NC, U.S.A.
Stat Med. 2013 Oct 30;32(24):4229-39. doi: 10.1002/sim.5825. Epub 2013 May 3.
High-dimensional longitudinal data involving latent variables such as depression and anxiety that cannot be quantified directly are often encountered in biomedical and social sciences. Multiple responses are used to characterize these latent quantities, and repeated measures are collected to capture their trends over time. Furthermore, substantive research questions may concern issues such as interrelated trends among latent variables that can only be addressed by modeling them jointly. Although statistical analysis of univariate longitudinal data has been well developed, methods for modeling multivariate high-dimensional longitudinal data are still under development. In this paper, we propose a latent factor linear mixed model (LFLMM) for analyzing this type of data. This model is a combination of the factor analysis and multivariate linear mixed models. Under this modeling framework, we reduced the high-dimensional responses to low-dimensional latent factors by the factor analysis model, and then we used the multivariate linear mixed model to study the longitudinal trends of these latent factors. We developed an expectation-maximization algorithm to estimate the model. We used simulation studies to investigate the computational properties of the expectation-maximization algorithm and compare the LFLMM model with other approaches for high-dimensional longitudinal data analysis. We used a real data example to illustrate the practical usefulness of the model.
在生物医学和社会科学中,经常会遇到包含诸如抑郁和焦虑等无法直接量化的潜在变量的高维纵向数据。多个响应变量用于刻画这些潜在量,并且收集重复测量数据以捕捉它们随时间的变化趋势。此外,实质性研究问题可能涉及潜在变量之间的相互关联趋势等问题,而这些问题只能通过联合建模来解决。尽管单变量纵向数据的统计分析已经得到了很好的发展,但多变量高维纵向数据的建模方法仍在不断发展中。在本文中,我们提出了一种潜在因子线性混合模型(LFLMM)来分析这类数据。该模型是因子分析和多变量线性混合模型的结合。在这个建模框架下,我们通过因子分析模型将高维响应变量降维为低维潜在因子,然后使用多变量线性混合模型来研究这些潜在因子的纵向趋势。我们开发了一种期望最大化算法来估计模型。我们通过模拟研究来考察期望最大化算法的计算特性,并将LFLMM模型与其他高维纵向数据分析方法进行比较。我们使用一个实际数据例子来说明该模型的实际应用价值。