Wang Jue, Luo Sheng
Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, 77030, TX, U.S.A.
Stat Med. 2017 Sep 10;36(20):3244-3256. doi: 10.1002/sim.7347. Epub 2017 Jun 1.
Multilevel item response theory (MLIRT) models have been widely used to analyze the multivariate longitudinal data of mixed types (e.g., categorical and continuous) in clinical studies. The MLIRT models often have unidimensional assumption, that is, the multiple outcomes are clinical manifestations of a univariate latent variable. However, the unidimensional assumption may be unrealistic because some diseases may be heterogeneous and characterized by multiple impaired domains with variable clinical symptoms and disease progressions. We relax this assumption and propose a multidimensional latent trait linear mixed model (MLTLMM) to allow multiple latent variables and within-item multidimensionality (one outcome can be a manifestation of more than one latent variable). We conduct extensive simulation studies to assess the unidimensional MLIRT model and the proposed MLTLMM model. The simulation studies suggest that the MLTLMM model outperforms unidimensional model when the multivariate longitudinal outcomes are manifested by multiple latent variables. The proposed model is applied to two motivating studies of amyotrophic lateral sclerosis: a clinical trial of ceftriaxone and the Pooled Resource Open-Access ALS Clinical Trials database. Copyright © 2017 John Wiley & Sons, Ltd.
多级项目反应理论(MLIRT)模型已被广泛用于分析临床研究中混合类型(如分类和连续)的多变量纵向数据。MLIRT模型通常具有单维假设,即多个结果是单变量潜在变量的临床表现。然而,单维假设可能不现实,因为某些疾病可能是异质性的,其特征是多个受损领域具有可变的临床症状和疾病进展。我们放宽这一假设,提出了一种多维潜在特质线性混合模型(MLTLMM),以允许多个潜在变量和项目内的多维性(一个结果可以是多个潜在变量的表现)。我们进行了广泛的模拟研究,以评估单维MLIRT模型和所提出的MLTLMM模型。模拟研究表明,当多变量纵向结果由多个潜在变量表现时,MLTLMM模型优于单维模型。所提出的模型应用于两项肌萎缩侧索硬化症的激励性研究:头孢曲松的一项临床试验和汇总资源开放获取ALS临床试验数据库。版权所有©2017约翰威立父子有限公司。