Suppr超能文献

通过光控引发的 DNA 分支迁移反应。

DNA branch migration reactions through photocontrollable toehold formation.

机构信息

Department of Chemistry, Shands Cancer Center and Center for Research at the Interface of Bio/Nano, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA.

出版信息

J Am Chem Soc. 2013 May 29;135(21):7967-73. doi: 10.1021/ja4018495. Epub 2013 May 16.

Abstract

Strand displacement cascades are commonly used to make dynamically assembled structures. Particularly, the concept of "toehold-mediated DNA branch migration reactions" has attracted considerable attention in relation to dynamic DNA nanostructures. However, it is a challenge to obtain and control the formation of pure 1:1 ratio DNA duplexes with toehold structures. Here, for the first time, we report a photocontrolled toehold formation method, which is based on the photocleavage of 2-nitrobenzyl linker-embedded DNA hairpin precursor structures. UV light irradiation (λ ≈ 365 nm) of solutions containing these DNA hairpin structures causes the complete cleavage of the nitrobenzyl linker, and pure 1:1 DNA duplexes with toehold structures are easily formed. Our experimental results indicate that the amount of toehold can be controlled by simply changing the dose of UV irradiation and that the resulting toehold structures can be used for subsequent toehold-mediated DNA branch migration reactions, e.g., DNA hybridization chain reactions. This newly established method will find broad application in the construction of light-powered, controllable, and dynamic DNA nanostructures or large-scale DNA circuits.

摘要

链位移级联反应通常用于构建动态组装结构。特别是,“引发介导的 DNA 分支迁移反应”的概念在动态 DNA 纳米结构方面引起了相当大的关注。然而,获得和控制具有引发结构的纯 1:1 比例 DNA 双链体仍然是一个挑战。在这里,我们首次报道了一种光控引发形成方法,该方法基于嵌入 2-硝基苄基连接子的 DNA 发夹前体结构的光裂解。含有这些 DNA 发夹结构的溶液的 UV 光照射(λ≈365nm)会导致硝基苄基连接子的完全裂解,并且很容易形成具有引发结构的纯 1:1 DNA 双链体。我们的实验结果表明,通过简单地改变 UV 照射的剂量可以控制引发的数量,并且所得的引发结构可以用于随后的引发介导的 DNA 分支迁移反应,例如 DNA 杂交链式反应。这种新建立的方法将在构建光控、可控和动态 DNA 纳米结构或大规模 DNA 电路方面得到广泛应用。

相似文献

1
DNA branch migration reactions through photocontrollable toehold formation.
J Am Chem Soc. 2013 May 29;135(21):7967-73. doi: 10.1021/ja4018495. Epub 2013 May 16.
2
Toehold clipping: A mechanism for remote control of DNA strand displacement.
Nucleic Acids Res. 2023 May 8;51(8):4055-4063. doi: 10.1093/nar/gkac1152.
3
Regulation of DNA Strand Displacement Using an Allosteric DNA Toehold.
J Am Chem Soc. 2016 Oct 26;138(42):14076-14082. doi: 10.1021/jacs.6b08794. Epub 2016 Oct 13.
4
Multicolor and erasable DNA photolithography.
ACS Nano. 2014 Jul 22;8(7):6849-55. doi: 10.1021/nn5024472. Epub 2014 Jul 7.
5
Light-Controlled, Toehold-Mediated Logic Circuit for Assembly of DNA Tiles.
ACS Appl Mater Interfaces. 2020 Feb 5;12(5):6336-6342. doi: 10.1021/acsami.9b21778. Epub 2020 Jan 23.
6
On the biophysics and kinetics of toehold-mediated DNA strand displacement.
Nucleic Acids Res. 2013 Dec;41(22):10641-58. doi: 10.1093/nar/gkt801. Epub 2013 Sep 9.
7
Cooperative Toehold: A Mechanism To Activate DNA Strand Displacement and Construct Biosensors.
Anal Chem. 2018 Aug 21;90(16):9751-9760. doi: 10.1021/acs.analchem.8b01202. Epub 2018 Aug 3.
8
DNA tetraplexes-based toehold activation for controllable DNA strand displacement reactions.
J Am Chem Soc. 2013 Sep 18;135(37):13628-31. doi: 10.1021/ja406053b. Epub 2013 Sep 9.
9
Control of DNA strand displacement kinetics using toehold exchange.
J Am Chem Soc. 2009 Dec 2;131(47):17303-14. doi: 10.1021/ja906987s.
10
Can strand displacement take place in DNA triplexes?
Org Biomol Chem. 2018 Jan 17;16(3):372-375. doi: 10.1039/c7ob02871g.

引用本文的文献

1
Signal amplified colorimetric nucleic acid detection based on autocatalytic hairpin assembly.
RSC Adv. 2024 May 28;14(24):17152-17157. doi: 10.1039/d4ra01982b. eCollection 2024 May 22.
2
Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers.
Angew Chem Weinheim Bergstr Ger. 2022 Mar 21;134(13):e202114016. doi: 10.1002/ange.202114016. Epub 2022 Feb 10.
3
Light-controlled growth of DNA organelles in synthetic cells.
Interface Focus. 2023 Aug 11;13(5):20230017. doi: 10.1098/rsfs.2023.0017. eCollection 2023 Oct 6.
4
Photocleavable -Nitrobenzyl-Protected DNA Architectures and Their Applications.
Chem Rev. 2023 May 24;123(10):6839-6887. doi: 10.1021/acs.chemrev.3c00016. Epub 2023 Apr 20.
5
DNA Strand Displacement Driven by Host-Guest Interactions.
J Am Chem Soc. 2022 Sep 14;144(36):16502-16511. doi: 10.1021/jacs.2c05726. Epub 2022 Sep 5.
6
A CRISPR-Cas12a integrated SERS nanoplatform with chimeric DNA/RNA hairpin guide for ultrasensitive nucleic acid detection.
Theranostics. 2022 Aug 8;12(13):5914-5930. doi: 10.7150/thno.75816. eCollection 2022.
7
Expanding Catch and Release DNA Decoy (CRDD) Technology with Pyrimidine Mimics.
Chemistry. 2022 Oct 18;28(58):e202201355. doi: 10.1002/chem.202201355. Epub 2022 Aug 25.
8
Programmable allosteric DNA regulations for molecular networks and nanomachines.
Sci Adv. 2022 Feb 4;8(5):eabl4589. doi: 10.1126/sciadv.abl4589. Epub 2022 Feb 2.
9
Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers.
Angew Chem Int Ed Engl. 2022 Mar 21;61(13):e202114016. doi: 10.1002/anie.202114016. Epub 2022 Feb 10.
10
Controllable DNA strand displacement by independent metal-ligand complexation.
Chem Sci. 2021 May 18;12(25):8698-8705. doi: 10.1039/d1sc01041g. eCollection 2021 Jul 1.

本文引用的文献

1
Nucleic Acid Nanostructures and Topology.
Angew Chem Int Ed Engl. 1998 Dec 17;37(23):3220-3238. doi: 10.1002/(SICI)1521-3773(19981217)37:23<3220::AID-ANIE3220>3.0.CO;2-C.
3
Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits.
J Am Chem Soc. 2012 Aug 29;134(34):13918-21. doi: 10.1021/ja300984b. Epub 2012 Aug 20.
4
Amplified detection of nucleic acid by G-quadruplex based hybridization chain reaction.
Biosens Bioelectron. 2012 Oct-Dec;38(1):258-63. doi: 10.1016/j.bios.2012.05.042. Epub 2012 Jun 8.
5
Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine.
J Am Chem Soc. 2012 Jul 4;134(26):10803-6. doi: 10.1021/ja304746k. Epub 2012 Jun 20.
6
An autonomous and controllable light-driven DNA walking device.
Angew Chem Int Ed Engl. 2012 Mar 5;51(10):2457-60. doi: 10.1002/anie.201107733. Epub 2012 Feb 1.
7
DNA computation: a photochemically controlled AND gate.
J Am Chem Soc. 2012 Feb 29;134(8):3810-5. doi: 10.1021/ja210050s. Epub 2012 Feb 16.
8
Expanding the rule set of DNA circuitry with associative toehold activation.
J Am Chem Soc. 2012 Jan 11;134(1):263-71. doi: 10.1021/ja206690a. Epub 2011 Dec 14.
9
A responsive hidden toehold to enable controllable DNA strand displacement reactions.
Angew Chem Int Ed Engl. 2011 Dec 9;50(50):11934-6. doi: 10.1002/anie.201105923. Epub 2011 Oct 19.
10
Neural network computation with DNA strand displacement cascades.
Nature. 2011 Jul 20;475(7356):368-72. doi: 10.1038/nature10262.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验