Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Annu Rev Biomed Eng. 2013;15:283-303. doi: 10.1146/annurev-bioeng-071812-152406. Epub 2013 May 3.
The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices, which constrain fluids to a small (typically submillimeter) scale, facilitate analysis of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, and pharmacology and, as a result, can be an invaluable tool for clinical diagnostics. An experimental session can accommodate hundreds to thousands of unique clotting, or thrombotic, events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor, under constant flow rate or constant pressure drop conditions. Distinct shear rates can be generated on a device using a single perfusion pump. Microfluidics facilitated both the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidic devices are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics.
体外血液研究可以在封闭或开放系统中进行,有或没有流动。微流控装置将流体限制在小(通常亚毫米)尺度内,便于分析血小板功能、凝血生物学、细胞生物流变学、粘附动力学以及药理学,因此可以成为临床诊断的宝贵工具。一个实验可以容纳数百到数千个独特的凝血或血栓事件。使用微流控技术,可以在生物聚合物、基质蛋白和组织因子的定义表面上,在恒定流速或恒定压降条件下,研究血栓形成事件。可以使用单个灌注泵在设备上产生不同的剪切率。微流控技术不仅有助于确定管腔内血栓通透性,还发现血小板收缩性可以通过流量突然下降而激活。微流控装置非常适合血小板、纤维蛋白和磷脂酰丝氨酸的多色成像,并提供了一种模拟人类血液的类似物来替代小鼠损伤模型。总的来说,微流控技术的进步为研究、相关血流动力学条件下的药物测试和临床诊断提供了许多机会。