Suppr超能文献

微流控与凝血生物学。

Microfluidics and coagulation biology.

机构信息

Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Annu Rev Biomed Eng. 2013;15:283-303. doi: 10.1146/annurev-bioeng-071812-152406. Epub 2013 May 3.

Abstract

The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices, which constrain fluids to a small (typically submillimeter) scale, facilitate analysis of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, and pharmacology and, as a result, can be an invaluable tool for clinical diagnostics. An experimental session can accommodate hundreds to thousands of unique clotting, or thrombotic, events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor, under constant flow rate or constant pressure drop conditions. Distinct shear rates can be generated on a device using a single perfusion pump. Microfluidics facilitated both the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidic devices are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics.

摘要

体外血液研究可以在封闭或开放系统中进行,有或没有流动。微流控装置将流体限制在小(通常亚毫米)尺度内,便于分析血小板功能、凝血生物学、细胞生物流变学、粘附动力学以及药理学,因此可以成为临床诊断的宝贵工具。一个实验可以容纳数百到数千个独特的凝血或血栓事件。使用微流控技术,可以在生物聚合物、基质蛋白和组织因子的定义表面上,在恒定流速或恒定压降条件下,研究血栓形成事件。可以使用单个灌注泵在设备上产生不同的剪切率。微流控技术不仅有助于确定管腔内血栓通透性,还发现血小板收缩性可以通过流量突然下降而激活。微流控装置非常适合血小板、纤维蛋白和磷脂酰丝氨酸的多色成像,并提供了一种模拟人类血液的类似物来替代小鼠损伤模型。总的来说,微流控技术的进步为研究、相关血流动力学条件下的药物测试和临床诊断提供了许多机会。

相似文献

1
Microfluidics and coagulation biology.
Annu Rev Biomed Eng. 2013;15:283-303. doi: 10.1146/annurev-bioeng-071812-152406. Epub 2013 May 3.
2
Platelet-targeting sensor reveals thrombin gradients within blood clots forming in microfluidic assays and in mouse.
J Thromb Haemost. 2012 Nov;10(11):2344-53. doi: 10.1111/j.1538-7836.2012.04928.x.
3
5
Systems Analysis of Thrombus Formation.
Circ Res. 2016 Apr 29;118(9):1348-62. doi: 10.1161/CIRCRESAHA.115.306824.
6
In microfluidico: Recreating in vivo hemodynamics using miniaturized devices.
Biorheology. 2015;52(5-6):303-18. doi: 10.3233/BIR-15065.
7
Recent advances in microfluidic technology of arterial thrombosis investigations.
Platelets. 2024 Dec;35(1):2316743. doi: 10.1080/09537104.2024.2316743. Epub 2024 Feb 23.
8
The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury.
Curr Opin Hematol. 2013 Sep;20(5):417-23. doi: 10.1097/MOH.0b013e3283642186.
9
Microfluidic approaches for the assessment of blood cell trauma: a focus on thrombotic risk in mechanical circulatory support devices.
Int J Artif Organs. 2016 Jun 15;39(4):184-93. doi: 10.5301/ijao.5000485. Epub 2016 Mar 30.
10
Blood clotting in space.
J Biol Regul Homeost Agents. 2004 Apr-Jun;18(2):187-92.

引用本文的文献

1
Microfluidics as a promising technology for personalized medicine.
Bioimpacts. 2024 Jun 16;15:29944. doi: 10.34172/bi.29944. eCollection 2025.
2
Injury-on-a-chip for modelling microvascular trauma-induced coagulation.
Lab Chip. 2025 Jan 28;25(3):440-453. doi: 10.1039/d4lc00471j.
3
Thrombogenicity of biodegradable metals.
Bioact Mater. 2024 May 12;38:411-421. doi: 10.1016/j.bioactmat.2024.05.002. eCollection 2024 Aug.
4
Next generation microfluidics: fulfilling the promise of lab-on-a-chip technologies.
Lab Chip. 2024 Mar 26;24(7):1867-1874. doi: 10.1039/d3lc00796k.
5
Pharmacologic targeting of coagulation factors XII and XI by monoclonal antibodies reduces thrombosis in nitinol stents under flow.
J Thromb Haemost. 2024 May;22(5):1433-1446. doi: 10.1016/j.jtha.2024.01.023. Epub 2024 Feb 7.
7
Effect of intermittent pneumatic compression on preventing deep vein thrombosis using microfluidic vein chip.
Front Bioeng Biotechnol. 2023 Nov 13;11:1281503. doi: 10.3389/fbioe.2023.1281503. eCollection 2023.
8
Fluid flow to mimic organ function in 3D models.
APL Bioeng. 2023 Aug 4;7(3):031501. doi: 10.1063/5.0146000. eCollection 2023 Sep.
9
A Parametric Analysis of Capillary Height in Single-Layer, Small-Scale Microfluidic Artificial Lungs.
Micromachines (Basel). 2022 May 25;13(6):822. doi: 10.3390/mi13060822.
10
Basic science research opportunities in thrombosis and hemostasis: Communication from the SSC of the ISTH.
J Thromb Haemost. 2022 Jun;20(6):1496-1506. doi: 10.1111/jth.15718. Epub 2022 Apr 22.

本文引用的文献

1
Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow.
Arterioscler Thromb Vasc Biol. 2013 Jan;33(1):105-13. doi: 10.1161/ATVBAHA.112.300522. Epub 2012 Oct 25.
2
Blood clots are rapidly assembled hemodynamic sensors: flow arrest triggers intraluminal thrombus contraction.
Arterioscler Thromb Vasc Biol. 2012 Dec;32(12):2938-45. doi: 10.1161/ATVBAHA.112.300312. Epub 2012 Oct 18.
3
Platelet-targeting sensor reveals thrombin gradients within blood clots forming in microfluidic assays and in mouse.
J Thromb Haemost. 2012 Nov;10(11):2344-53. doi: 10.1111/j.1538-7836.2012.04928.x.
4
Do circulating tumor cells play a role in coagulation and thrombosis?
Front Oncol. 2012 Sep 10;2:115. doi: 10.3389/fonc.2012.00115. eCollection 2012.
5
In vitro microvessels for the study of angiogenesis and thrombosis.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9342-7. doi: 10.1073/pnas.1201240109. Epub 2012 May 29.
6
Multiscale prediction of patient-specific platelet function under flow.
Blood. 2012 Jul 5;120(1):190-8. doi: 10.1182/blood-2011-10-388140. Epub 2012 Apr 18.
7
Thrombus growth and embolism on tissue factor-bearing collagen surfaces under flow: role of thrombin with and without fibrin.
Arterioscler Thromb Vasc Biol. 2012 Jun;32(6):1466-76. doi: 10.1161/ATVBAHA.112.249789. Epub 2012 Apr 19.
8
Fluorogenic peptide-based substrates for monitoring thrombin activity.
ChemMedChem. 2012 Apr;7(4):606-17. doi: 10.1002/cmdc.201100560. Epub 2012 Jan 31.
9
Blood clot formation under flow: the importance of factor XI depends strongly on platelet count.
Biophys J. 2012 Jan 4;102(1):10-8. doi: 10.1016/j.bpj.2011.10.048. Epub 2012 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验