Manning Timmy, Sleator Roy D, Walsh Paul
Department of Computer Science; Cork Institute of Technology; Cork, Ireland.
Department of Biological Sciences; Cork Institute of Technology; Cork, Ireland.
Bioengineered. 2014 Mar-Apr;5(2):80-95. doi: 10.4161/bioe.26997. Epub 2013 Dec 16.
Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems.
人工神经网络(ANNs)是一类强大的用于分类和函数逼近的机器学习模型,在自然界中有类似物。人工神经网络通过对映射示例的反复评估来学习将刺激映射到响应。这种学习方法产生的网络因其抗噪声能力和对新刺激生成有意义响应的泛化能力而受到认可。正是人工神经网络的这些特性使其在生物信息学问题的应用中具有吸引力,在这些问题中,数据的解释可能并不总是显而易见,而且演绎技术所需的领域知识不完整或可能导致规则的组合爆炸。在本文中,我们介绍了人工神经网络理论,并回顾了一些最近在生物信息学问题上的有趣应用。
IEEE Trans Neural Netw. 2007-5
IEEE Trans Syst Man Cybern B Cybern. 2006-6
Bioinspir Biomim. 2008-3
IEEE Trans Neural Netw. 2006-5
IEEE Trans Neural Netw. 2004-11
Nat Biotechnol. 2008-2
IEEE Trans Syst Man Cybern B Cybern. 2007-8
J Med Internet Res. 2021-8-19
Comput Biol Med. 2013-3-28
ACS Synth Biol. 2013-2-15
J Digit Imaging. 2013-12
Clin Neurophysiol. 2013-5-1
Proc Inst Mech Eng H. 2013-7
Retrovirology. 2013-3-27