文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

受生物启发的智能决策:关于人工神经网络在生物信息学中应用的评论

Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics.

作者信息

Manning Timmy, Sleator Roy D, Walsh Paul

机构信息

Department of Computer Science; Cork Institute of Technology; Cork, Ireland.

Department of Biological Sciences; Cork Institute of Technology; Cork, Ireland.

出版信息

Bioengineered. 2014 Mar-Apr;5(2):80-95. doi: 10.4161/bioe.26997. Epub 2013 Dec 16.


DOI:10.4161/bioe.26997
PMID:24335433
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4049912/
Abstract

Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems.

摘要

人工神经网络(ANNs)是一类强大的用于分类和函数逼近的机器学习模型,在自然界中有类似物。人工神经网络通过对映射示例的反复评估来学习将刺激映射到响应。这种学习方法产生的网络因其抗噪声能力和对新刺激生成有意义响应的泛化能力而受到认可。正是人工神经网络的这些特性使其在生物信息学问题的应用中具有吸引力,在这些问题中,数据的解释可能并不总是显而易见,而且演绎技术所需的领域知识不完整或可能导致规则的组合爆炸。在本文中,我们介绍了人工神经网络理论,并回顾了一些最近在生物信息学问题上的有趣应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/901020c0ba7d/bbug-5-80-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/a4f7f3b900aa/bbug-5-80-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/a99111bbfacd/bbug-5-80-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/7213708e2d17/bbug-5-80-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/b0bd45ee7ec8/bbug-5-80-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/218e3ad83799/bbug-5-80-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/0c5d5502b8e1/bbug-5-80-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/e7bc86968793/bbug-5-80-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/4438395934ed/bbug-5-80-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/93535b1af574/bbug-5-80-g9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/901020c0ba7d/bbug-5-80-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/a4f7f3b900aa/bbug-5-80-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/a99111bbfacd/bbug-5-80-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/7213708e2d17/bbug-5-80-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/b0bd45ee7ec8/bbug-5-80-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/218e3ad83799/bbug-5-80-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/0c5d5502b8e1/bbug-5-80-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/e7bc86968793/bbug-5-80-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/4438395934ed/bbug-5-80-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/93535b1af574/bbug-5-80-g9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b80/4049912/901020c0ba7d/bbug-5-80-g10.jpg

相似文献

[1]
Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics.

Bioengineered. 2014

[2]
Determination of the number of principal directions in a biologically plausible PCA model.

IEEE Trans Neural Netw. 2007-5

[3]
A self-organizing CMAC network with gray credit assignment.

IEEE Trans Syst Man Cybern B Cybern. 2006-6

[4]
Assessment of bioinspired models for pattern recognition in biomimetic systems.

Bioinspir Biomim. 2008-3

[5]
Spiking perceptrons.

IEEE Trans Neural Netw. 2006-5

[6]
A general framework for learning rules from data.

IEEE Trans Neural Netw. 2004-11

[7]
What are artificial neural networks?

Nat Biotechnol. 2008-2

[8]
Logistic model tree extraction from artificial neural networks.

IEEE Trans Syst Man Cybern B Cybern. 2007-8

[9]
All-optical spiking neurosynaptic networks with self-learning capabilities.

Nature. 2019-5-8

[10]
Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

Methods Mol Biol. 2015

引用本文的文献

[1]
Exploring the efficacy of artificial neural networks in predicting lung cancer recurrence: a retrospective study based on patient records.

Transl Lung Cancer Res. 2023-10-31

[2]
Accuracy of Ultrasound Diagnosis of Thyroid Nodules Based on Artificial Intelligence-Assisted Diagnostic Technology: A Systematic Review and Meta-Analysis.

Int J Endocrinol. 2022-9-23

[3]
Machine learning predicts clinically significant health related quality of life improvement after sensorimotor rehabilitation interventions in chronic stroke.

Sci Rep. 2022-7-4

[4]
Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models.

J Pers Med. 2022-3-22

[5]
Dynamic changes of intestinal flora in patients with irritable bowel syndrome combined with anxiety and depression after oral administration of enterobacteria capsules.

Bioengineered. 2021-12

[6]
An Artificial Neural Network Prediction Model for Posttraumatic Epilepsy: Retrospective Cohort Study.

J Med Internet Res. 2021-8-19

[7]
Sequential Pattern Mining to Predict Medical In-Hospital Mortality from Administrative Data: Application to Acute Coronary Syndrome.

J Healthc Eng. 2021

[8]
Artificial Intelligence for Personalized Medicine in Thyroid Cancer: Current Status and Future Perspectives.

Front Oncol. 2021-2-9

[9]
Dental Caries Prediction Based on a Survey of the Oral Health Epidemiology among the Geriatric Residents of Liaoning, China.

Biomed Res Int. 2020

[10]
Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches.

J Neuroeng Rehabil. 2020-9-29

本文引用的文献

[1]
Computational identification of operon-like transcriptional loci in eukaryotes.

Comput Biol Med. 2013-3-28

[2]
Promoter element arising from the fusion of standard BioBrick parts.

ACS Synth Biol. 2013-2-15

[3]
Segmentation, feature extraction, and multiclass brain tumor classification.

J Digit Imaging. 2013-12

[4]
EEG segmentation for improving automatic CAP detection.

Clin Neurophysiol. 2013-5-1

[5]
A microfluidic system for cell type classification based on cellular size-independent electrical properties.

Lab Chip. 2013-5-3

[6]
Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification.

Proc Inst Mech Eng H. 2013-7

[7]
Identification of diverse full-length endogenous betaretroviruses in megabats and microbats.

Retrovirology. 2013-3-27

[8]
Comparative genomics identifies the mouse Bmp3 promoter and an upstream evolutionary conserved region (ECR) in mammals.

PLoS One. 2013-2-22

[9]
Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces.

Front Neurorobot. 2013-2-28

[10]
ATHENA: a tool for meta-dimensional analysis applied to genotypes and gene expression data to predict HDL cholesterol levels.

Pac Symp Biocomput. 2013

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索