Suppr超能文献

用于睡眠中周期性交替模式阶段分类的高效系统。

Efficient system for classifying cyclic alternating pattern phases in sleep.

作者信息

Agarwal Megha, Singhal Amit

机构信息

ECE Department, Jaypee Institute of Information Technology, Noida, India.

ECE Department, Netaji Subhas University of Technology, Delhi, India.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):79. doi: 10.1007/s11571-025-10261-x. Epub 2025 May 19.

Abstract

Electroencephalogram (EEG) signals are a popular tool to analyze sleep patterns. Cyclic alternating patterns (CAP) can be observed in EEG signals during unconscious periods of sleep. Detailed study of CAP can help in early diagnosis of many sleep disorders. Firstly, the CAP cycles need to be segregated into their constituents, phase A and phase B periods. In this work, we develop an accurate and easy-to-implement system to distinguish between the two CAP phases. The EEG signals are denoised and divided into smaller segments for an easier processing. These segments are decomposed into different frequency sub-bands using zero-phase filtering. Thereafter, statistical features are extracted from the sub-band components, and significant features are selected using the Kruskal-Wallis test. We consider four different algorithms for classification, namely, k-nearest neighbour (kNN), support vector machine (SVM), bagged tree (BT) and neural network (NN). The classification results are compiled for the datasets that include healthy subjects and those suffering from insomnia. The BT classifier produces the best results for the combined balanced dataset, with 83.29% accuracy and 83.58% F-1 score. The proposed method is more accurate and efficient than the existing schemes and can be considered for widespread deployments in real-world scenarios.

摘要

脑电图(EEG)信号是分析睡眠模式的常用工具。在睡眠无意识阶段的EEG信号中可以观察到周期性交替模式(CAP)。对CAP的详细研究有助于许多睡眠障碍的早期诊断。首先,需要将CAP周期分为其组成部分,即A期和B期。在这项工作中,我们开发了一个准确且易于实现的系统来区分CAP的两个阶段。对EEG信号进行去噪并分成较小的片段以便于处理。使用零相位滤波将这些片段分解成不同的频率子带。此后,从子带分量中提取统计特征,并使用Kruskal-Wallis检验选择显著特征。我们考虑四种不同的分类算法,即k近邻(kNN)、支持向量机(SVM)、袋装树(BT)和神经网络(NN)。针对包括健康受试者和失眠患者的数据集编制分类结果。对于组合的平衡数据集,BT分类器产生了最佳结果,准确率为83.29%,F-1分数为83.58%。所提出的方法比现有方案更准确、更高效,可考虑在实际场景中广泛部署。

相似文献

本文引用的文献

6
Data augmentation for deep-learning-based electroencephalography.基于深度学习的脑电图数据增强
J Neurosci Methods. 2020 Dec 1;346:108885. doi: 10.1016/j.jneumeth.2020.108885. Epub 2020 Jul 31.
8
Sleep Spindles: Mechanisms and Functions.睡眠纺锤波:机制与功能。
Physiol Rev. 2020 Apr 1;100(2):805-868. doi: 10.1152/physrev.00042.2018. Epub 2019 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验