血红蛋白是如何产生如此多样的具有生理相关性的功能的?

How does hemoglobin generate such diverse functionality of physiological relevance?

作者信息

Yonetani Takashi, Kanaori Kenji

机构信息

Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.

出版信息

Biochim Biophys Acta. 2013 Sep;1834(9):1873-84. doi: 10.1016/j.bbapap.2013.04.026. Epub 2013 May 1.

Abstract

The absolute values of the O2-affinities (P50, Klow, and Khigh) of hemoglobin (Hb) are regulated neither by changes in the static T-/R-quaternary and associated tertiary structures nor the ligation states. They are pre-determined and regulated by the extrinsic environmental factors such as pH, buffers, and heterotropic effectors. The effect and role of O2 on Hb are reversibly to drive the structural allosteric equilibrium between the T(deoxy)- and R(oxy)-Hb toward R(oxy)-Hb (the structural allostery). R(oxy)-Hb has a higher O2-affinity (Khigh) relative to that (Klow) of the T(deoxy)-Hb (Khigh>Klow) under any fixed environmental conditions. The apparent O2-affinity of Hb is high, as the globin matrix interferes with the dissociation process of O2, forcing the dissociated O2 geminately to re-bind to the heme Fe. This artificially increases [oxy-Hb] and concomitantly decreases [deoxy-Hb], leading to the apparent increases of the O2-affinity of Hb. The effector-linked high-frequency thermal fluctuations of the globin matrix act as a gating mechanism to modulate such physical, energetic, and kinetic barriers to enhance the dissociation process of O2, resulted in increases in [deoxy-Hb] and concomitant decrease in [oxy-Hb], leading to apparent reductions of the O2-affinity of Hb (the entropic allostery). The heme in Hb is simply a low-affinity O2-trap, the coordination structure of which is not altered by static T-/R-quaternary and associated tertiary structural changes of Hb. Thus, heterotrophic effectors are the signal molecule, which acts as a functional link between these two allosteries and generates the diverse functionality of Hb of physiological relevance. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.

摘要

血红蛋白(Hb)的O2亲和力(P50、Klow和Khigh)的绝对值既不受静态T-/R-四级结构及相关三级结构变化的调节,也不受连接状态的调节。它们由外在环境因素如pH、缓冲剂和异源效应物预先决定并调节。O2对Hb的作用和角色是可逆地驱动T(脱氧)-Hb和R(氧合)-Hb之间的结构变构平衡向R(氧合)-Hb方向移动(结构变构)。在任何固定的环境条件下,R(氧合)-Hb相对于T(脱氧)-Hb的O2亲和力(Khigh)更高(Khigh>Klow)。Hb的表观O2亲和力较高,因为球蛋白基质会干扰O2的解离过程,迫使解离的O2成对地重新结合到血红素铁上。这人为地增加了[氧合-Hb],并相应地降低了[脱氧-Hb],导致Hb的O2亲和力明显增加。球蛋白基质的效应物相关高频热波动充当门控机制,调节此类物理、能量和动力学障碍,以增强O2的解离过程,导致[脱氧-Hb]增加,[氧合-Hb]相应减少,从而导致Hb的O2亲和力明显降低(熵变构)。Hb中的血红素只是一个低亲和力的O2陷阱,其配位结构不会因Hb的静态T-/R-四级结构及相关三级结构变化而改变。因此,异源效应物是信号分子,它充当这两种变构之间的功能联系,并产生具有生理相关性的Hb的多种功能。本文是名为:氧结合与传感蛋白的特刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索