Suppr超能文献

静息态功能磁共振成像中的神经血管因素。

Neurovascular factors in resting-state functional MRI.

机构信息

Center for Functional Magnetic Resonance Imaging, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA 92093-0677, USA.

出版信息

Neuroimage. 2013 Oct 15;80:339-48. doi: 10.1016/j.neuroimage.2013.04.071. Epub 2013 May 1.

Abstract

There has been growing interest in the use of resting-state functional magnetic resonance imaging (rsfMRI) for the assessment of disease and treatment, and a number of studies have reported significant disease-related changes in resting-state blood oxygenation level dependent (BOLD) signal amplitude and functional connectivity. rsfMRI is particularly suitable for clinical applications because the approach does not require the patient to perform a task and scans can be obtained in a relatively short amount of time. However, the mechanisms underlying resting-state BOLD activity are not well understood and thus the interpretation of changes in resting state activity is not always straightforward. The BOLD signal represents the hemodynamic response to neural activity, and changes in resting-state activity can reflect a complex combination of neural, vascular, and metabolic factors. This paper examines the role of neurovascular factors in rsfMRI and reviews approaches for the interpretation and analysis of resting state measures in the presence of confounding factors.

摘要

人们对利用静息态功能磁共振成像(rsfMRI)评估疾病和治疗越来越感兴趣,许多研究报告了静息态血氧水平依赖(BOLD)信号幅度和功能连接的显著疾病相关变化。rsfMRI 特别适用于临床应用,因为该方法不需要患者执行任务,并且可以在相对较短的时间内获得扫描。然而,静息态 BOLD 活动的机制尚不清楚,因此静息态活动变化的解释并不总是直接的。BOLD 信号代表神经活动的血液动力学反应,静息态活动的变化可以反映神经、血管和代谢因素的复杂组合。本文探讨了神经血管因素在 rsfMRI 中的作用,并回顾了在存在混杂因素时解释和分析静息态测量的方法。

相似文献

1
Neurovascular factors in resting-state functional MRI.
Neuroimage. 2013 Oct 15;80:339-48. doi: 10.1016/j.neuroimage.2013.04.071. Epub 2013 May 1.
2
Resting-state fMRI confounds and cleanup.
Neuroimage. 2013 Oct 15;80:349-59. doi: 10.1016/j.neuroimage.2013.04.001. Epub 2013 Apr 6.
3
Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
Neuroimage. 2020 Sep;218:116871. doi: 10.1016/j.neuroimage.2020.116871. Epub 2020 Apr 23.
5
Dynamic functional connectivity: promise, issues, and interpretations.
Neuroimage. 2013 Oct 15;80:360-78. doi: 10.1016/j.neuroimage.2013.05.079. Epub 2013 May 24.
6
Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.
J Magn Reson Imaging. 2015 Aug;42(2):231-46. doi: 10.1002/jmri.24786. Epub 2015 Feb 26.
8
Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
Neuroimage. 2018 Jun;173:72-87. doi: 10.1016/j.neuroimage.2018.02.004. Epub 2018 Feb 13.
9
Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.
Neuroimage. 2015 Feb 1;106:111-22. doi: 10.1016/j.neuroimage.2014.11.028. Epub 2014 Nov 21.
10
Infraslow Electroencephalographic and Dynamic Resting State Network Activity.
Brain Connect. 2017 Jun;7(5):265-280. doi: 10.1089/brain.2017.0492.

引用本文的文献

1
Microvascular structure variability explains variance in fMRI functional connectivity.
Brain Struct Funct. 2025 Feb 8;230(2):39. doi: 10.1007/s00429-025-02899-4.
2
Neurovascular coupling over cortical brain areas and resting state network connectivity with and without rigidified carotid artery.
Neurophotonics. 2025 Jan;12(Suppl 1):S14606. doi: 10.1117/1.NPh.12.S1.S14606. Epub 2025 Feb 4.
3
Imaging and Anesthesia Protocol Optimization in Sedated Clinical Resting-State fMRI.
AJNR Am J Neuroradiol. 2025 Feb 3;46(2):293-301. doi: 10.3174/ajnr.A8438.
4
Sex differences in gray matter, white matter, and regional brain perfusion in young, healthy adults.
Am J Physiol Heart Circ Physiol. 2024 Oct 1;327(4):H847-H858. doi: 10.1152/ajpheart.00341.2024. Epub 2024 Aug 9.
5
Whole-Brain Deactivations Precede Uninduced Mind-Blanking Reports.
J Neurosci. 2023 Oct 4;43(40):6807-6815. doi: 10.1523/JNEUROSCI.0696-23.2023. Epub 2023 Aug 29.
6
Brain dysconnectivity with heart failure.
Brain Commun. 2023 Mar 30;5(2):fcad103. doi: 10.1093/braincomms/fcad103. eCollection 2023.
7
Hemodynamic timing in resting-state and breathing-task BOLD fMRI.
Neuroimage. 2023 Jul 1;274:120120. doi: 10.1016/j.neuroimage.2023.120120. Epub 2023 Apr 16.
8
Age-related differences in resting-state functional connectivity from childhood to adolescence.
Cereb Cortex. 2023 May 24;33(11):6928-6942. doi: 10.1093/cercor/bhad011.
9
Parallel factor analysis for multidimensional decomposition of functional near-infrared spectroscopy data.
Neurophotonics. 2022 Oct;9(4):045004. doi: 10.1117/1.NPh.9.4.045004. Epub 2022 Nov 15.

本文引用的文献

1
An introduction to normalization and calibration methods in functional MRI.
Psychometrika. 2013 Apr;78(2):308-21. doi: 10.1007/s11336-012-9309-x. Epub 2012 Dec 29.
2
Caffeine-Induced Global Reductions in Resting-State BOLD Connectivity Reflect Widespread Decreases in MEG Connectivity.
Front Hum Neurosci. 2013 Mar 4;7:63. doi: 10.3389/fnhum.2013.00063. eCollection 2013.
3
The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
Neuroimage. 2013 Jan 15;65:499-510. doi: 10.1016/j.neuroimage.2012.09.044. Epub 2012 Sep 25.
4
Absolute quantification of resting oxygen metabolism and metabolic reactivity during functional activation using QUO2 MRI.
Neuroimage. 2012 Nov 15;63(3):1353-63. doi: 10.1016/j.neuroimage.2012.07.065. Epub 2012 Aug 16.
5
Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI.
Neuroimage. 2012 Oct 15;63(1):356-64. doi: 10.1016/j.neuroimage.2012.06.035. Epub 2012 Jun 26.
6
Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness.
J Neurosci. 2012 May 16;32(20):7082-90. doi: 10.1523/JNEUROSCI.3769-11.2012.
7
A signal-processing pipeline for magnetoencephalography resting-state networks.
Brain Connect. 2011;1(1):49-59. doi: 10.1089/brain.2011.0001.
8
Biophysical modulations of functional connectivity.
Brain Connect. 2011;1(4):267-77. doi: 10.1089/brain.2011.0039. Epub 2011 Oct 17.
9
Magnetic resonance imaging of resting OEF and CMRO₂ using a generalized calibration model for hypercapnia and hyperoxia.
Neuroimage. 2012 Apr 2;60(2):1212-25. doi: 10.1016/j.neuroimage.2011.12.056. Epub 2011 Dec 29.
10
Indication of BOLD-specific venous flow-volume changes from precisely controlled hyperoxic vs. hypercapnic calibration.
J Cereb Blood Flow Metab. 2012 Apr;32(4):709-19. doi: 10.1038/jcbfm.2011.174. Epub 2011 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验