Tachibana Atsushi, Ikoma Yoko, Hirano Yoshiyuki, Kershaw Jeff, Obata Takayuki
Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
Research Center for Child Mental Development, Chiba University, Chiba, Japan.
Front Neurosci. 2022 Sep 21;16:961686. doi: 10.3389/fnins.2022.961686. eCollection 2022.
Functional magnetic resonance imaging (fMRI) evaluates brain activity using blood oxygenation level-dependent (BOLD) contrast. Resting-state fMRI (rsfMRI) examines spontaneous brain function using BOLD in the absence of a task, and the default mode network (DMN) has been identified from that. The DMN is a set of nodes within the brain that appear to be active and in communication when the subject is in an awake resting state. In addition to signal changes related to neural activity, it is thought that the BOLD signal may be affected by systemic low-frequency oscillations (SysLFOs) that are non-neuronal in source and likely propagate throughout the brain to arrive at different regions at different times. However, it may be difficult to distinguish between the response due to neuronal activity and the arrival of a SysLFO in specific regions. Conventional single-shot EPI (Conv) acquisition requires a longish repetition time, but faster image acquisition has recently become possible with multiband excitation EPI (MB). In this study, we evaluated the time-lag between nodes of the DMN using both Conv and MB protocols to determine whether it is possible to distinguish between neuronal activity and SysLFO related responses during rsfMRI. While the Conv protocol data suggested that SysLFOs substantially influence the apparent time-lag of neuronal activity, the MB protocol data implied that the effects of SysLFOs and neuronal activity on the BOLD response may be separated. Using a higher time-resolution acquisition for rsfMRI might help to distinguish neuronal activity induced changes to the BOLD response from those induced by non-neuronal sources.
功能磁共振成像(fMRI)利用血氧水平依赖(BOLD)对比来评估大脑活动。静息态功能磁共振成像(rsfMRI)在无任务的情况下使用BOLD来检查大脑的自发功能,并且由此识别出了默认模式网络(DMN)。DMN是大脑中的一组节点,当受试者处于清醒静息状态时,这些节点似乎处于活跃状态并相互通信。除了与神经活动相关的信号变化外,人们认为BOLD信号可能会受到全身性低频振荡(SysLFOs)的影响,这些振荡的来源是非神经元的,并且可能在整个大脑中传播,在不同时间到达不同区域。然而,可能很难区分特定区域中由于神经活动引起的反应和SysLFO的到达。传统的单次激发回波平面成像(Conv)采集需要较长的重复时间,但最近使用多频段激发回波平面成像(MB)实现了更快的图像采集。在本研究中,我们使用Conv和MB协议评估了DMN各节点之间的时间滞后,以确定在rsfMRI期间是否有可能区分神经活动和与SysLFO相关的反应。虽然Conv协议数据表明SysLFOs对神经活动的表观时间滞后有重大影响,但MB协议数据表明SysLFOs和神经活动对BOLD反应的影响可能是可分离的。对rsfMRI使用更高时间分辨率的采集可能有助于区分神经活动引起的BOLD反应变化和非神经源引起的变化。