IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Bioresour Technol. 2013 Jul;139:149-54. doi: 10.1016/j.biortech.2013.04.032. Epub 2013 Apr 15.
Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.
微藻固定 CO2 已被认为是一种有吸引力的 CO2 减排方法。本工作的主要目的是通过在鼓泡式光生物反应器中进行光自养培养,在不同 CO2 浓度(2%至 10%)和通气速率(0.1 至 0.7 vvm)下最大化绿藻小球藻 P12 的 CO2 固定速率([公式:见正文])。结果表明,在 30°C 下培养 7 天后,使用 6.5% CO2 和 0.5 vvm 可获得最大的[公式:见正文](2.22 gL(-1)d(-1))。尽管微藻的最终生物量浓度和最大生物量生产力受到不同培养条件的影响,但在评估的通气和 CO2 水平下,微藻细胞的生化组成没有显著差异。本研究表明,优化微藻培养条件可以被认为是通过小球藻最大限度地减少 CO2 的一种有用策略。