Suppr超能文献

疏水性庆大霉素载药纳米颗粒可有效抵抗感染小鼠的布鲁氏菌。

Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice.

机构信息

Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain.

出版信息

Antimicrob Agents Chemother. 2013 Jul;57(7):3326-33. doi: 10.1128/AAC.00378-13. Epub 2013 May 6.

Abstract

The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis.

摘要

人布鲁氏菌病的临床治疗仍然具有挑战性,需要能够靶向携带病原体的细胞内隔室的体外活性抗生素。在感染部位持续释放抗生素可以减少所需剂量的次数,从而降低治疗相关的毒性。在这项研究中,疏水性修饰的庆大霉素(庆大霉素-AOT[AOT 是双(2-乙基己基)磺基琥珀酸钠盐])要么被微结构化,要么被包封在聚(乳酸-共-羟基乙酸)(PLGA)纳米颗粒中。开发的制剂的功效无论是在体外还是体内都进行了研究。当使用临床相关浓度(18 毫克/升)时,庆大霉素制剂可降低实验感染的 THP-1 单核细胞中的布鲁氏菌感染(减少 2 个对数单位)。此外,体内研究表明,载有庆大霉素-AOT 的纳米颗粒可有效地将药物靶向肝脏和脾脏,并在两个器官中维持抗生素治疗浓度长达 4 天。这导致抗生素在实验感染的小鼠中的疗效得到改善。因此,虽然 14 剂游离庆大霉素不能改变感染的进程,但仅 4 剂载有庆大霉素-AOT 的纳米颗粒就可使脾脏感染减少 3.23 个对数级,并使 50%的受感染小鼠消除感染,而没有不良毒性作用的证据。这些结果强烈表明,含有化学修饰的疏水性庆大霉素的 PLGA 纳米颗粒可能是治疗人类布鲁氏菌病的一种有前途的替代方法。

相似文献

1
Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice.
Antimicrob Agents Chemother. 2013 Jul;57(7):3326-33. doi: 10.1128/AAC.00378-13. Epub 2013 May 6.
2
Poly(D,L-lactide-coglycolide) particles containing gentamicin: pharmacokinetics and pharmacodynamics in Brucella melitensis-infected mice.
Antimicrob Agents Chemother. 2007 Apr;51(4):1185-90. doi: 10.1128/AAC.00809-06. Epub 2007 Jan 12.
3
Intracellular killing of Brucella melitensis in human macrophages with microsphere-encapsulated gentamicin.
J Antimicrob Chemother. 2006 Sep;58(3):549-56. doi: 10.1093/jac/dkl257. Epub 2006 Jun 23.
4
Nanocarriers with gentamicin to treat intracellular pathogens.
J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):3296-302. doi: 10.1166/jnn.2006.478.
6
Novel bioactive hydrophobic gentamicin carriers for the treatment of intracellular bacterial infections.
Acta Biomater. 2011 Apr;7(4):1599-608. doi: 10.1016/j.actbio.2010.11.031. Epub 2010 Nov 27.
7
Gentamicin-loaded microspheres for reducing the intracellular Brucella abortus load in infected monocytes.
J Antimicrob Chemother. 2004 Jun;53(6):981-8. doi: 10.1093/jac/dkh227. Epub 2004 Apr 21.
10
Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection.
Int J Nanomedicine. 2012;7:4053-63. doi: 10.2147/IJN.S34341. Epub 2012 Jul 26.

引用本文的文献

3
4
Enhancing Therapeutic Efficacy against Infection in a Murine Model Using Rifampicin-Loaded PLGA Nanoparticles.
ACS Omega. 2023 Dec 13;8(51):49362-49371. doi: 10.1021/acsomega.3c07892. eCollection 2023 Dec 26.
6
7
Antibiotic persistence of intracellular Brucella abortus.
PLoS Negl Trop Dis. 2022 Jul 26;16(7):e0010635. doi: 10.1371/journal.pntd.0010635. eCollection 2022 Jul.
8
Brucella species-induced brucellosis: Antimicrobial effects, potential resistance and toxicity of silver and gold nanosized particles.
PLoS One. 2022 Jul 14;17(7):e0269963. doi: 10.1371/journal.pone.0269963. eCollection 2022.
10
Antibacterial Efficacies of Nanostructured Aminoglycosides.
ACS Omega. 2022 Feb 6;7(6):4724-4734. doi: 10.1021/acsomega.1c04399. eCollection 2022 Feb 15.

本文引用的文献

1
Human brucellosis in the People's Republic of China during 2005-2010.
Int J Infect Dis. 2013 May;17(5):e289-92. doi: 10.1016/j.ijid.2012.12.030. Epub 2013 Feb 23.
3
Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis.
PLoS One. 2012;7(2):e32090. doi: 10.1371/journal.pone.0032090. Epub 2012 Feb 29.
4
Nanomedicine as an emerging approach against intracellular pathogens.
Int J Nanomedicine. 2011;6:3281-93. doi: 10.2147/IJN.S27285. Epub 2011 Dec 9.
5
High loading of gentamicin in bioadhesive PVM/MA nanostructured microparticles using compressed carbon-dioxide.
Pharm Res. 2011 Feb;28(2):309-21. doi: 10.1007/s11095-010-0248-x. Epub 2010 Dec 2.
6
Novel bioactive hydrophobic gentamicin carriers for the treatment of intracellular bacterial infections.
Acta Biomater. 2011 Apr;7(4):1599-608. doi: 10.1016/j.actbio.2010.11.031. Epub 2010 Nov 27.
7
An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin.
Toxicol Sci. 2011 Feb;119(2):245-56. doi: 10.1093/toxsci/kfq267. Epub 2010 Sep 9.
10
Drug delivery systems for potential treatment of intracellular bacterial infections.
Front Biosci (Landmark Ed). 2010 Jan 1;15(2):397-417. doi: 10.2741/3627.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验