Suppr超能文献

大肠杆菌 K12 同化铵过程中氮同位素分馏的机制。

Mechanism for nitrogen isotope fractionation during ammonium assimilation by Escherichia coli K12.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 May 21;110(21):8696-701. doi: 10.1073/pnas.1216683110. Epub 2013 May 6.

Abstract

Organisms that use ammonium as the sole nitrogen source discriminate between [(15)N] and [(14)N] ammonium. This selectivity leaves an isotopic signature in their biomass that depends on the external concentration of ammonium. To dissect how differences in discrimination arise molecularly, we examined a wild-type (WT) strain of Escherichia coli K12 and mutant strains with lesions affecting ammonium-assimilatory proteins. We used isotope ratio mass spectrometry (MS) to assess the nitrogen isotopic composition of cell material when the strains were grown in batch culture at either high or low external concentrations of NH3 (achieved by controlling total NH4Cl and pH of the medium). At high NH3 (≥ 0.89 µM), discrimination against the heavy isotope by the WT strain (-19.2‰) can be accounted for by the equilibrium isotope effect for dissociation of NH4(+) to NH3 + H(+). NH3 equilibrates across the cytoplasmic membrane, and glutamine synthetase does not manifest an isotope effect in vivo. At low NH3 (≤ 0.18 µM), discrimination reflects an isotope effect for the NH4(+) channel AmtB (-14.1‰). By making E. coli dependent on the low-affinity ammonium-assimilatory pathway, we determined that biosynthetic glutamate dehydrogenase has an inverse isotope effect in vivo (+8.8‰). Likewise, by making unmediated diffusion of NH3 across the cytoplasmic membrane rate-limiting for cell growth in a mutant strain lacking AmtB, we could deduce an in vivo isotope effect for transport of NH3 across the membrane (-10.9‰). The paper presents the raw data from which our conclusions were drawn and discusses the assumptions underlying them.

摘要

利用铵作为唯一氮源的生物体能够区分 [(15)N] 和 [(14)N] 铵。这种选择性会在其生物量中留下一个同位素特征,该特征取决于铵的外部浓度。为了从分子上剖析这种选择性差异是如何产生的,我们研究了野生型 (WT) 大肠杆菌 K12 菌株和突变菌株,这些突变菌株的损伤影响了氨同化蛋白。我们使用同位素比质谱 (MS) 来评估当菌株在高或低外部 NH3 浓度(通过控制培养基中的总 NH4Cl 和 pH 来实现)的分批培养中生长时,细胞物质的氮同位素组成。在高 NH3(≥ 0.89 µM)下,WT 菌株对重同位素的歧视(-19.2‰)可以用 NH4(+) 离解为 NH3 + H(+) 的平衡同位素效应来解释。NH3 在细胞质膜中平衡,谷氨酰胺合成酶在体内没有表现出同位素效应。在低 NH3(≤ 0.18 µM)下,歧视反映了 NH4(+) 通道 AmtB 的同位素效应(-14.1‰)。通过使大肠杆菌依赖于低亲和力的铵同化途径,我们确定生物合成谷氨酸脱氢酶在体内具有反同位素效应(+8.8‰)。同样,通过使缺乏 AmtB 的突变菌株中 NH3 无中介扩散穿过细胞质膜成为细胞生长的限速步骤,我们可以推断出 NH3 穿过膜的体内同位素效应(-10.9‰)。本文提供了我们得出结论的原始数据,并讨论了其中的假设。

相似文献

7
Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration.低浓度铵条件下大肠杆菌氮同化建模。
J Biotechnol. 2009 Nov;144(3):175-83. doi: 10.1016/j.jbiotec.2009.09.003. Epub 2009 Sep 15.
9
The molecular basis of K+ exclusion by the Escherichia coli ammonium channel AmtB.大肠杆菌铵通道 AmtB 拒钾的分子基础。
J Biol Chem. 2013 May 17;288(20):14080-14086. doi: 10.1074/jbc.M113.457952. Epub 2013 Apr 1.

引用本文的文献

本文引用的文献

10
Isotopic remembrance of metabolism past.代谢过往的同位素印记。
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12565-6. doi: 10.1073/pnas.0906428106. Epub 2009 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验