Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany.
Department of Environmental Systems Science, ETH-Zurich, Zurich, Switzerland.
Nat Commun. 2021 Aug 6;12(1):4774. doi: 10.1038/s41467-021-25000-z.
Biological N fixation was key to the expansion of life on early Earth. The N-fixing microorganisms and the nitrogenase type used in the Proterozoic are unknown, although it has been proposed that the canonical molybdenum-nitrogenase was not used due to low molybdenum availability. We investigate N fixation in Lake Cadagno, an analogue system to the sulfidic Proterozoic continental margins, using a combination of biogeochemical, molecular and single cell techniques. In Lake Cadagno, purple sulfur bacteria (PSB) are responsible for high N fixation rates, to our knowledge providing the first direct evidence for PSB in situ N fixation. Surprisingly, no alternative nitrogenases are detectable, and N fixation is exclusively catalyzed by molybdenum-nitrogenase. Our results show that molybdenum-nitrogenase is functional at low molybdenum conditions in situ and that in contrast to previous beliefs, PSB may have driven N fixation in the Proterozoic ocean.
生物固氮是早期地球上生命扩张的关键。尽管有人提出,由于钼的可用性低,因此不会使用典型的钼氮酶,但用于元古代的固氮微生物和氮酶类型尚不清楚。我们使用生物地球化学、分子和单细胞技术的组合,研究了类似于硫化物元古代大陆边缘的卡达戈湖的固氮作用。在卡达戈湖中,紫色硫细菌(PSB)负责高固氮率,据我们所知,这首次提供了 PSB 在原位固氮的直接证据。令人惊讶的是,检测不到替代的氮酶,并且固氮仅由钼氮酶催化。我们的结果表明,钼氮酶在原位低钼条件下具有功能,与先前的观点相反,PSB 可能在元古代海洋中驱动了氮固定。