Department of Chemistry, Center for Micro/Nano Science and Technology, and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, 701 Taiwan.
ACS Nano. 2013 Jun 25;7(6):5330-42. doi: 10.1021/nn401187c. Epub 2013 May 10.
Photothermal cancer therapy using near-infrared (NIR) laser radiation is an emerging treatment. In the NIR region, two biological transparency windows are located in 650-950 nm (first NIR window) and 1000-1350 nm (second NIR window) with optimal tissue transmission obtained from low scattering and energy absorption, thus providing maximum radiation penetration through tissue and minimizing autofluorescence. To date, intensive effort has resulted in the generation of various methods that can be used to shift the absorbance of nanomaterials to the 650-950 nm NIR regions for studying photoinduced therapy. However, NIR light absorbers smaller than 100 nm in the second NIR region have been scant. We report that a Au nanorod (NR) can be designed with a rod-in-shell (rattle-like) structure smaller than 100 nm that is tailored to be responsive to the first and second NIR windows, in which we can perform hyperthermia-based therapy. In vitro performance clearly displays high efficacy in the NIR photothermal destruction of cancer cells, showing large cell-damaged area beyond the laser-irradiated area. This marked phenomenon has made the rod-in-shell structure a promising hyperthermia agent for the in vivo photothermal ablation of solid tumors when activated using a continuous-wave 808 m (first NIR window) or a 1064 nm (second NIR window) diode laser. We tailored the UV-vis-NIR spectrum of the rod-in-shell structure by changing the gap distance between the Au NR core and the AuAg nanoshell, to evaluate the therapeutic effect of using a 1064 nm diode laser. Regarding the first NIR window with the use of an 808 nm diode laser, rod-in-shell particles exhibit a more effective anticancer efficacy in the laser ablation of solid tumors compared to Au NRs.
光热癌症治疗使用近红外(NIR)激光辐射是一种新兴的治疗方法。在近红外区域,两个生物透明窗口位于 650-950nm(第一近红外窗口)和 1000-1350nm(第二近红外窗口),低散射和能量吸收获得最佳组织传输,从而最大限度地通过组织辐射穿透并最小化自发荧光。迄今为止,已经进行了大量的努力,产生了各种方法,可以用于将纳米材料的吸收率转移到 650-950nm 的近红外区域,以研究光诱导治疗。然而,在第二近红外区域小于 100nm 的近红外光吸收体却很少。我们报告说,可以设计一种小于 100nm 的棒壳(摇铃状)结构的 Au 纳米棒(NR),使其对第一和第二近红外窗口有响应性,我们可以在其中进行基于热疗的治疗。体外性能清楚地显示了在近红外光热破坏癌细胞方面的高效性,显示出超过激光照射区域的大细胞损伤面积。这一显著现象使棒壳结构成为一种有前途的热疗剂,可在使用连续波 808m(第一近红外窗口)或 1064nm(第二近红外窗口)二极管激光激活时,用于体内光热消融实体瘤。我们通过改变 AuNR 核和 AuAg 纳米壳之间的间隙距离来调整棒壳结构的紫外-可见-近红外光谱,以评估使用 1064nm 二极管激光的治疗效果。对于使用 808nm 二极管激光的第一近红外窗口,与 AuNR 相比,棒壳颗粒在固体肿瘤的激光烧蚀中表现出更有效的抗癌疗效。