Chair of Theoretical Chemistry, Department of Chemistry, University of Munich, Butenandtstr. 7, D-81377 Munich, Germany.
J Chem Phys. 2013 May 7;138(17):174104. doi: 10.1063/1.4801084.
An atomic-orbital (AO) based formulation for calculating nuclear magnetic resonance chemical shieldings at the second-order Møller-Plesset perturbation theory level is introduced, which provides a basis for reducing the scaling of the computational effort with the molecular size from the fifth power to linear and for a specific nucleus to sublinear. The latter sublinear scaling in the rate-determining steps becomes possible by avoiding global perturbations with respect to the magnetic field and by solving for quantities that involve the local nuclear magnetic spin perturbation instead. For avoiding the calculation of the second-order perturbed density matrix, we extend our AO-based reformulation of the Z-vector method within a density matrix-based scheme. Our pilot implementation illustrates the fast convergence with respect to the required number of Laplace points and the asymptotic scaling behavior in the rate-determining steps.
介绍了一种基于原子轨道(AO)的方法,可在第二阶Møller-Plesset 微扰理论水平计算核磁共振化学位移,为降低分子大小的计算工作量与第五次幂的比例提供了基础,对于特定的核则为次线性。通过避免相对于磁场的全局微扰,并求解涉及局部核自旋微扰的量,可以实现后一种次线性比例的速率决定步骤。为避免计算二阶受扰密度矩阵,我们在基于密度矩阵的方案中扩展了基于 AO 的 Z-矢量方法的重构。我们的初步实现说明了相对于所需拉普拉斯点数量的快速收敛以及在速率决定步骤中的渐近比例行为。