Kussmann Jörg, Ochsenfeld Christian
Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
J Chem Phys. 2007 Aug 7;127(5):054103. doi: 10.1063/1.2749509.
Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.
本文介绍了一种基于密度矩阵的新公式,用于在哈特里 - 福克和密度泛函理论水平上计算核磁共振化学位移。对于最高占据分子轨道 - 最低未占据分子轨道间隙不为零的系统,该方法使我们能够将计算量的渐近缩放阶数从三次方降低到线性,从而使具有1000个及以上原子的分子系统能够用当今的计算机处理。关键特性是根据单粒子密度矩阵(D - CPSCF)对耦合微扰自洽场(CPSCF)理论进行重新表述,这完全避免了使用正则分子轨道。通过直接求解所需的微扰密度矩阵并采用线性缩放积分收缩方案,计算量的整体缩放降低到线性。我们公式的一个特别关注点是在使用稀疏代数例程以获得整体线性缩放行为时确保数值稳定性。