Suppr超能文献

分子建模中的“分而治之”和“缓存”。

"Dividing and Conquering" and "Caching" in Molecular Modeling.

机构信息

School of Life Sciences, Jilin University, Changchun 130012, China.

School of Artificial Intelligence, Jilin University, Changchun 130012, China.

出版信息

Int J Mol Sci. 2021 May 10;22(9):5053. doi: 10.3390/ijms22095053.

Abstract

Molecular modeling is widely utilized in subjects including but not limited to physics, chemistry, biology, materials science and engineering. Impressive progress has been made in development of theories, algorithms and software packages. To divide and conquer, and to cache intermediate results have been long standing principles in development of algorithms. Not surprisingly, most important methodological advancements in more than half century of molecular modeling are various implementations of these two fundamental principles. In the mainstream classical computational molecular science, tremendous efforts have been invested on two lines of algorithm development. The first is coarse graining, which is to represent multiple basic particles in higher resolution modeling as a single larger and softer particle in lower resolution counterpart, with resulting force fields of partial transferability at the expense of some information loss. The second is enhanced sampling, which realizes "dividing and conquering" and/or "caching" in configurational space with focus either on reaction coordinates and collective variables as in metadynamics and related algorithms, or on the transition matrix and state discretization as in Markov state models. For this line of algorithms, spatial resolution is maintained but results are not transferable. Deep learning has been utilized to realize more efficient and accurate ways of "dividing and conquering" and "caching" along these two lines of algorithmic research. We proposed and demonstrated the local free energy landscape approach, a new framework for classical computational molecular science. This framework is based on a third class of algorithm that facilitates molecular modeling through partially transferable in resolution "caching" of distributions for local clusters of molecular degrees of freedom. Differences, connections and potential interactions among these three algorithmic directions are discussed, with the hope to stimulate development of more elegant, efficient and reliable formulations and algorithms for "dividing and conquering" and "caching" in complex molecular systems.

摘要

分子建模广泛应用于物理、化学、生物、材料科学与工程等多个领域。在理论、算法和软件包的开发方面已经取得了令人瞩目的进展。为了分而治之,以及缓存中间结果,这些一直是算法开发的基本原则。毫不奇怪,在分子建模的半个多世纪里,最重要的方法进展都是这两个基本原理的各种实现。在主流的经典计算分子科学中,算法开发主要有两条线。第一条是粗粒化,即将更高分辨率建模中的多个基本粒子表示为较低分辨率对应物中的单个更大、更软的粒子,从而在一定程度上损失部分信息的情况下实现部分转移力场。第二条是增强采样,它在构象空间中实现“分而治之”和/或“缓存”,重点要么是反应坐标和集体变量,如元动力学和相关算法,要么是转移矩阵和状态离散化,如马尔可夫状态模型。对于这一类算法,空间分辨率得以保持,但结果不可转移。深度学习已被用于沿着这两条算法研究路线实现更高效、更准确的“分而治之”和“缓存”方法。我们提出并证明了局部自由能景观方法,这是经典计算分子科学的一个新框架。该框架基于第三类算法,通过在局部分子自由度簇的分辨率部分转移“缓存”分布,促进分子建模。讨论了这三种算法方向之间的差异、联系和潜在相互作用,以期激发在复杂分子系统中“分而治之”和“缓存”更优雅、高效和可靠的公式和算法的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65f3/8126232/5da93dc93810/ijms-22-05053-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验