Kumar Ravi, Escorcia Andrés M, Stein Matthias
Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
Inorg Chem. 2025 May 19;64(19):9558-9570. doi: 10.1021/acs.inorgchem.5c00503. Epub 2025 May 7.
The oxygen tolerance of some [NiFe] hydrogenase enzymes is crucial for designing efficient bioinspired catalysts for sustainable hydrogen production and advancing renewable energy technologies. To investigate this, we employed a quantum mechanical (QM) cluster model and quantum mechanics/molecular mechanics (QM/MM) calculations to study the fully oxidized state of the [NiFe]-hydrogenase from SH. Our analysis focused on the structural and electronic properties of the enzyme's active site across different spin states, including closed-shell singlet (CS, S = 0), high-spin triplet (HS, S = 1), and open-shell singlet broken symmetry (BS, S = 0). Using a comprehensive structural model (>300 atoms), we identified the ground state of the fully oxidized enzyme state to be a spin-coupled BS Ni(III)Fe(III) oxidation state, where residues beyond the first coordination sphere primarily contribute sterically. Notably, natural bond order calculations revealed an unusual three-center two-electron bond at the active site, which may enhance the open-shell ground state stability and the enzyme's resilience under oxidative conditions. Our comparative study of QM and QM/MM methods provides insights into their performance, facilitating and guiding the choice of suitable enzyme models when studying other metalloproteins.
某些[NiFe]氢化酶的氧耐受性对于设计用于可持续制氢的高效生物启发催化剂以及推进可再生能源技术至关重要。为了对此进行研究,我们采用量子力学(QM)簇模型和量子力学/分子力学(QM/MM)计算来研究来自嗜热栖热菌(SH)的[NiFe]氢化酶的完全氧化态。我们的分析集中在酶活性位点在不同自旋态下的结构和电子性质,包括闭壳单重态(CS,S = 0)、高自旋三重态(HS,S = 1)和开壳单重态破缺对称性(BS,S = 0)。使用一个综合结构模型(>300个原子),我们确定完全氧化酶态的基态为自旋耦合的BS Ni(III)Fe(III)氧化态,其中第一配位层以外的残基主要在空间上起作用。值得注意的是,自然键序计算揭示了活性位点处存在不寻常的三中心两电子键,这可能增强开壳基态稳定性以及酶在氧化条件下的复原能力。我们对QM和QM/MM方法的比较研究提供了对它们性能的见解,有助于并指导在研究其他金属蛋白时选择合适的酶模型。