Suppr超能文献

一种模拟捕获非遗传继承累积效应的 G 矩阵。

A G matrix analogue to capture the cumulative effects of nongenetic inheritance.

机构信息

Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, Cornwall, UK.

出版信息

J Evol Biol. 2013 Jun;26(6):1234-43. doi: 10.1111/jeb.12089. Epub 2013 May 8.

Abstract

The genetic variance-covariance (G) matrix describes the variances and covariances of genetic traits under strict genetic inheritance. Genetically expressed traits often influence trait expression in another via nongenetic forms of transmission and inheritance, however. The importance of non-genetic influences on phenotypic evolution is increasingly clear, but how genetic and nongenetic inheritance interact to determine the response to selection is not well understood. Here, we use the 'reachability matrix' - a key analytical tool of geometric control theory - to integrate both forms of inheritance, capturing how the consequences of generation-lagged maternal effects accumulate. Building on the classic Lande and Kirkpatrick model that showed how nongenetic (maternal) inheritance fundamentally alters the expected path of phenotypic evolution, we make novel inferences through decomposition of the reachability matrix. In particular, we quantify how nongenetic inheritance affects the distribution (orientation and shape) of ellipses of phenotypic change and how these distributions influence subsequent evolution. This interweaving of phenotypic means and variances accumulates generation by generation and is described analytically by the reachability matrix, which acts as an analogue of G when genetic and nongenetic inheritance both act.

摘要

遗传方差-协方差(G)矩阵描述了严格遗传下遗传特征的方差和协方差。然而,遗传表达的特征经常通过非遗传形式的传递和遗传来影响另一个特征的表达。非遗传因素对表型进化的重要性越来越明显,但遗传和非遗传遗传如何相互作用来确定对选择的反应还不是很清楚。在这里,我们使用“可达性矩阵”——几何控制理论的一个关键分析工具——来整合这两种形式的遗传,捕捉代际滞后的母体效应的后果是如何积累的。在经典的 Lande 和 Kirkpatrick 模型表明非遗传(母体)遗传如何从根本上改变表型进化的预期路径的基础上,我们通过可达性矩阵的分解做出了新的推断。特别是,我们量化了非遗传遗传如何影响表型变化椭圆的分布(方向和形状),以及这些分布如何影响后续的进化。这种表型均值和方差的交织逐代积累,并由可达性矩阵进行分析描述,当遗传和非遗传遗传都起作用时,可达性矩阵就像 G 一样起作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验