Suppr超能文献

细胞模式从细胞增殖动力学的耦合化学和物理场中出现:拟南芥根作为研究系统。

Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system.

机构信息

Instituto de Física, Universidad Nacional Autónoma de México (UNAM), México, Distrito Federal, México.

出版信息

PLoS Comput Biol. 2013;9(5):e1003026. doi: 10.1371/journal.pcbi.1003026. Epub 2013 May 2.

Abstract

A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems.

摘要

发育生物学的一个核心问题是揭示干细胞如何维持其再生能力,同时又产生分化的子细胞,并最终成为组织或器官的功能部分。本文提出,在发育过程中,生长器官内的细胞从在细胞增殖时产生于空间的宏观物理场中获得位置信息。这种动态相互作用触发并响应特定于每个生物系统的化学和遗传过程。我们选择拟南芥的根尖分生组织来开发我们的动力学模型,因为这个系统在分子、遗传和细胞水平上都得到了很好的研究,并且具有多细胞干细胞生态位的关键特征。我们构建了一个动力学模型,将细胞周期的基本分子机制与张力物理场和生长素动力学耦合起来,这两者都已知在根发育中发挥作用。我们进行了广泛的数值计算,允许与考虑根尖细胞模式的实验测量进行定量比较。我们的模型恢复了从增殖到过渡和伸长区域的转变,这是多细胞生物中干细胞生态位的特征。此外,我们成功地预测了在各种施加的生长素处理或改变的物理生长条件下预期的改变的细胞模式。我们的建模平台可以扩展到明确考虑基因调控网络或处理其他发育系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b0b/3642054/861e6ff2b8ec/pcbi.1003026.g001.jpg

相似文献

2
Model of polar auxin transport coupled to mechanical forces retrieves robust morphogenesis along the Arabidopsis root.
Phys Rev E. 2017 Mar;95(3-1):032410. doi: 10.1103/PhysRevE.95.032410. Epub 2017 Mar 16.
3
Analysis of root meristem size development.
Methods Mol Biol. 2010;655:177-87. doi: 10.1007/978-1-60761-765-5_12.
4
Positional information by differential endocytosis splits auxin response to drive Arabidopsis root meristem growth.
Curr Biol. 2011 Nov 22;21(22):1918-23. doi: 10.1016/j.cub.2011.10.002. Epub 2011 Nov 10.
5
Temporal integration of auxin information for the regulation of patterning.
Elife. 2020 May 7;9:e55832. doi: 10.7554/eLife.55832.
6
Apical meristem exhaustion during determinate primary root growth in the moots koom 1 mutant of Arabidopsis thaliana.
Planta. 2011 Dec;234(6):1163-77. doi: 10.1007/s00425-011-1470-4. Epub 2011 Jul 9.
7
Branching out in new directions: the control of root architecture by lateral root formation.
New Phytol. 2008;179(3):595-614. doi: 10.1111/j.1469-8137.2008.02472.x. Epub 2008 Apr 30.
8
APSR1, a novel gene required for meristem maintenance, is negatively regulated by low phosphate availability.
Plant Sci. 2013 May;205-206:2-12. doi: 10.1016/j.plantsci.2012.12.015. Epub 2013 Jan 17.

引用本文的文献

1
A fast validation test of gene regulatory network models via the Fokker-Planck equation.
J Biol Phys. 2025 May 19;51(1):16. doi: 10.1007/s10867-025-09681-x.
2
A mathematical model for pancreatic cancer during intraepithelial neoplasia.
R Soc Open Sci. 2024 Oct 30;11(10):240702. doi: 10.1098/rsos.240702. eCollection 2024 Oct.
5
Information Processing in the Brain as Optimal Entropy Transport: A Theoretical Approach.
Entropy (Basel). 2020 Oct 29;22(11):1231. doi: 10.3390/e22111231.
6
The recent advances in the mathematical modelling of human pluripotent stem cells.
SN Appl Sci. 2020;2(2):276. doi: 10.1007/s42452-020-2070-3. Epub 2020 Jan 27.
7
Natural Root Cellular Variation in Responses to Osmotic Stress in Accessions.
Genes (Basel). 2019 Nov 29;10(12):983. doi: 10.3390/genes10120983.
8
Coherent directed movement toward food modeled in , a ciliated animal lacking a nervous system.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8901-8908. doi: 10.1073/pnas.1815655116. Epub 2019 Apr 12.
9
Algorithm for a particle-based growth model for plant tissues.
R Soc Open Sci. 2018 Nov 28;5(11):181127. doi: 10.1098/rsos.181127. eCollection 2018 Nov.
10
Curvature-driven spatial patterns in growing 3D domains: A mechanochemical model for phyllotaxis.
PLoS One. 2018 Aug 16;13(8):e0201746. doi: 10.1371/journal.pone.0201746. eCollection 2018.

本文引用的文献

1
Longitudinal zonation pattern in plant roots: conflicts and solutions.
Trends Plant Sci. 2013 May;18(5):237-43. doi: 10.1016/j.tplants.2012.10.002. Epub 2012 Nov 2.
2
Hormone symphony during root growth and development.
Dev Dyn. 2012 Dec;241(12):1867-85. doi: 10.1002/dvdy.23878. Epub 2012 Oct 25.
3
Mechanical regulation of auxin-mediated growth.
Curr Biol. 2012 Aug 21;22(16):1468-76. doi: 10.1016/j.cub.2012.06.050. Epub 2012 Jul 19.
4
Mechanosensitive mechanisms in transcriptional regulation.
J Cell Sci. 2012 Jul 1;125(Pt 13):3061-73. doi: 10.1242/jcs.093005. Epub 2012 Jul 13.
6
Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: an atomic force microscopy study.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021916. doi: 10.1103/PhysRevE.85.021916. Epub 2012 Feb 21.
7
Simulation of organ patterning on the floral meristem using a polar auxin transport model.
PLoS One. 2012;7(1):e28762. doi: 10.1371/journal.pone.0028762. Epub 2012 Jan 23.
8
A novel sensor to map auxin response and distribution at high spatio-temporal resolution.
Nature. 2012 Jan 15;482(7383):103-6. doi: 10.1038/nature10791.
9
The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology?
Bioessays. 2012 Feb;34(2):149-57. doi: 10.1002/bies.201100031. Epub 2011 Nov 18.
10
Growth and development of the root apical meristem.
Curr Opin Plant Biol. 2012 Feb;15(1):17-23. doi: 10.1016/j.pbi.2011.10.006. Epub 2011 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验