Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México.
Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351 El Haya, Xalapa, Veracruz, 91070, México.
Plant J. 2020 Aug;103(5):1639-1654. doi: 10.1111/tpj.14853. Epub 2020 Jun 16.
Roots provide physical and nutritional support to plant organs that are above ground and play critical roles for adaptation via intricate movements and growth patterns. Through screening the effects of bacterial isolates from roots of halophyte Mesquite (Prosopis sp.) on Arabidopsis thaliana, we identified Achromobacter sp. 5B1 as a probiotic bacterium that influences plant functional traits. Detailed genetic and architectural analyses in Arabidopsis grown in vitro and in soil, cell division measurements, auxin transport and response gene expression and brefeldin A treatments demonstrated that root colonization with Achromobacter sp. 5B1 changes the growth and branching patterns of roots, which were related to auxin perception and redistribution. Expression analysis of auxin transport and signaling revealed a redistribution of auxin within the primary root tip of wild-type seedlings by Achromobacter sp. 5B1 that is disrupted by brefeldin A and correlates with repression of auxin transporters PIN1 and PIN7 in root provasculature, and PIN2 in the epidermis and cortex of the root tip, whereas expression of PIN3 was enhanced in the columella. In seedlings harboring AUX1, EIR1, AXR1, ARF7ARF19, TIR1AFB2AFB3 single, double or triple loss-of-function mutations, or in a dominant (gain-of-function) mutant of SLR1, the bacterium caused primary roots to form supercoils that are devoid of lateral roots. The changes in growth and root architecture elicited by the bacterium helped Arabidopsis seedlings to resist salt stress better. Thus, Achromobacter sp. 5B1 fine tunes both root movements and the auxin response, which may be important for plant growth and environmental adaptation.
根系为地上植物器官提供物理和营养支持,并通过复杂的运动和生长模式发挥关键的适应作用。通过筛选盐生植物龙舌兰(Mesquite sp.)根系细菌分离物对拟南芥的影响,我们鉴定出阿克曼氏菌(Achromobacter sp.)5B1 是一种影响植物功能特性的益生菌细菌。在体外和土壤中生长的拟南芥中进行的详细遗传和结构分析、细胞分裂测量、生长素运输和响应基因表达以及布雷菲德菌素 A 处理表明,阿克曼氏菌(Achromobacter sp.)5B1 对根系的定殖会改变根的生长和分枝模式,这与生长素的感知和再分配有关。生长素运输和信号转导的表达分析表明,阿克曼氏菌(Achromobacter sp.)5B1 在野生型幼苗的主根尖端重新分配生长素,布雷菲德菌素 A 会破坏这种再分配,并与根维管束中生长素转运蛋白 PIN1 和 PIN7 的抑制以及根尖端表皮和皮层中的 PIN2 相关,而柱细胞中的 PIN3 表达增强。在携带 AUX1、EIR1、AXR1、ARF7ARF19、TIR1AFB2AFB3 单突变、双突变或三突变、或 SLR1 显性(功能获得)突变体的幼苗中,细菌导致主根形成没有侧根的超螺旋。细菌引起的生长和根系结构变化有助于拟南芥幼苗更好地抵抗盐胁迫。因此,阿克曼氏菌(Achromobacter sp.)5B1 可以精细调节根的运动和生长素的响应,这对于植物的生长和环境适应可能很重要。