Breitling Rainer, Achcar Fiona, Takano Eriko
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
ACS Synth Biol. 2013 Jul 19;2(7):373-8. doi: 10.1021/sb4000228. Epub 2013 May 20.
The successful engineering of secondary metabolite production relies on the availability of detailed computational models of metabolism. In this brief review we discuss the types of models used for synthetic biology and their application for the engineering of metabolism. We then highlight some of the major modeling challenges, in particular the need to make informative model predictions based on incomplete and uncertain information. This issue is particularly pressing in the synthetic biology of secondary metabolism, due to the genetic diversity of microbial secondary metabolite producers, the difficulty of enzyme-kinetic characterization of the complex biosynthetic machinery, and the need for engineered pathways to function efficiently in heterologous hosts. We argue that an explicit quantitative consideration of the resulting uncertainty of metabolic models can lead to more informative predictions to guide the design of improved production hosts for bioactive secondary metabolites.
次生代谢产物生产的成功工程依赖于详细的代谢计算模型。在这篇简短的综述中,我们讨论了用于合成生物学的模型类型及其在代谢工程中的应用。然后,我们强调了一些主要的建模挑战,特别是需要基于不完整和不确定的信息做出有参考价值的模型预测。由于微生物次生代谢产物生产者的遗传多样性、复杂生物合成机制的酶动力学表征困难以及工程途径在异源宿主中高效发挥作用的需求,这个问题在次生代谢的合成生物学中尤为紧迫。我们认为,对代谢模型产生的不确定性进行明确的定量考虑,可以得出更有参考价值的预测,以指导设计用于生物活性次生代谢产物的改良生产宿主。