School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, EH8 9AD Scotland, United Kingdom.
Behav Brain Sci. 2013 Jun;36(3):181-204. doi: 10.1017/S0140525X12000477. Epub 2013 May 10.
Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to adaptive success. This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action. Sections 1 and 2 lay out the key elements and implications of the approach. Section 3 explores a variety of pitfalls and challenges, spanning the evidential, the methodological, and the more properly conceptual. The paper ends (sections 4 and 5) by asking how such approaches might impact our more general vision of mind, experience, and agency.
最近有人认为,大脑本质上是一种预测机器。它们是由大量的细胞组成的,通过不断地将传入的感觉输入与自上而下的期望或预测相匹配,来支持感知和行动。这是通过使用分层生成模型来实现的,该模型旨在在皮质处理的双向级联中最小化预测误差。这种解释提供了一种感知和行动的统一模型,阐明了注意力的功能作用,并可能巧妙地捕捉到皮质处理对适应成功的特殊贡献。本文批判性地考察了这种“分层预测机”方法,得出的结论是,它为统一的身心科学提供了迄今为止最好的线索。第 1 节和第 2 节阐述了该方法的关键要素和含义。第 3 节探讨了各种陷阱和挑战,涵盖了证据、方法和更恰当的概念方面。本文最后(第 4 节和第 5 节)询问了此类方法将如何影响我们对思维、经验和能动性的更一般看法。