Lubelski Ariel, Klafter Joseph
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Biophys J. 2008 Jun;94(12):4646-53. doi: 10.1529/biophysj.107.119081. Epub 2008 Mar 7.
The method of FRAP (fluorescence recovery after photobleaching), which has been broadly used to measure lateral mobility of fluorescent-labeled molecules in cell membranes, is formulated here in terms of continuous time random walks (CTRWs), which offer both analytical expressions and a scheme for numerical simulations. We propose an approach based on the CTRW and the corresponding fractional diffusion equation (FDE) to analyze FRAP results in the presence of anomalous subdiffusion. The FDE generalizes the simple diffusive picture, which has been applied to FRAP when assuming regular diffusion, to account for subdiffusion. We use a subordination relationship between the solutions of the fractional and normal diffusion equations to fit FRAP recovery curves obtained from CTRW simulations, and compare the fits to the commonly used approach based on the simple diffusion equation with a time dependent diffusion coefficient (TDDC). The CTRW and TDDC describe two different dynamical schemes, and although the CTRW formalism appears to be more complicated, it provides a physical description that underlies anomalous lateral diffusion.
光漂白后荧光恢复(FRAP)方法已被广泛用于测量细胞膜中荧光标记分子的横向流动性,本文根据连续时间随机游走(CTRW)对其进行了阐述,CTRW既提供了解析表达式,又提供了数值模拟方案。我们提出了一种基于CTRW和相应分数阶扩散方程(FDE)的方法,用于分析存在反常亚扩散时的FRAP结果。FDE将简单扩散图景进行了推广,在假设常规扩散时,简单扩散图景已应用于FRAP,以解释亚扩散现象。我们利用分数阶扩散方程和正态扩散方程解之间的从属关系来拟合从CTRW模拟获得的FRAP恢复曲线,并将这些拟合结果与基于具有时间依赖扩散系数(TDDC)的简单扩散方程的常用方法进行比较。CTRW和TDDC描述了两种不同的动力学方案,尽管CTRW形式似乎更复杂,但它提供了反常横向扩散背后的物理描述。