IEEE Trans Med Imaging. 2022 Jun;41(6):1331-1345. doi: 10.1109/TMI.2021.3139999. Epub 2022 Jun 1.
Prostate segmentation in transrectal ultrasound (TRUS) image is an essential prerequisite for many prostate-related clinical procedures, which, however, is also a long-standing problem due to the challenges caused by the low image quality and shadow artifacts. In this paper, we propose a Shadow-consistent Semi-supervised Learning (SCO-SSL) method with two novel mechanisms, namely shadow augmentation (Shadow-AUG) and shadow dropout (Shadow-DROP), to tackle this challenging problem. Specifically, Shadow-AUG enriches training samples by adding simulated shadow artifacts to the images to make the network robust to the shadow patterns. Shadow-DROP enforces the segmentation network to infer the prostate boundary using the neighboring shadow-free pixels. Extensive experiments are conducted on two large clinical datasets (a public dataset containing 1,761 TRUS volumes and an in-house dataset containing 662 TRUS volumes). In the fully-supervised setting, a vanilla U-Net equipped with our Shadow-AUG&Shadow-DROP outperforms the state-of-the-arts with statistical significance. In the semi-supervised setting, even with only 20% labeled training data, our SCO-SSL method still achieves highly competitive performance, suggesting great clinical value in relieving the labor of data annotation. Source code is released at https://github.com/DIAL-RPI/SCO-SSL.
在经直肠超声(TRUS)图像中进行前列腺分割是许多前列腺相关临床操作的基本前提,但由于图像质量低和阴影伪影带来的挑战,这也是一个长期存在的问题。在本文中,我们提出了一种带有两种新颖机制的阴影一致半监督学习(SCO-SSL)方法,即阴影增强(Shadow-AUG)和阴影丢弃(Shadow-DROP),以解决这一具有挑战性的问题。具体来说,Shadow-AUG 通过向图像中添加模拟阴影伪影来丰富训练样本,使网络对阴影模式具有鲁棒性。Shadow-DROP 迫使分割网络使用相邻无阴影像素来推断前列腺边界。我们在两个大型临床数据集(包含 1761 个 TRUS 卷的公共数据集和包含 662 个 TRUS 卷的内部数据集)上进行了广泛的实验。在完全监督设置下,配备我们的 Shadow-AUG&Shadow-DROP 的 vanilla U-Net 优于具有统计学意义的最先进技术。在半监督设置下,即使只有 20%的标记训练数据,我们的 SCO-SSL 方法仍然取得了极具竞争力的性能,这表明在减轻数据注释的劳动方面具有重要的临床价值。源代码可在 https://github.com/DIAL-RPI/SCO-SSL 上获得。