Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
PLoS One. 2013 May 9;8(5):e63605. doi: 10.1371/journal.pone.0063605. Print 2013.
The optimal long-term vaccination strategies to provide population-level protection against serogroup A Neisseria meningitidis (MenA) are unknown. We developed an age-structured mathematical model of MenA transmission, colonization, and disease in the African meningitis belt, and used this model to explore the impact of various vaccination strategies.
The model stratifies the simulated population into groups based on age, infection status, and MenA antibody levels. We defined the model parameters (such as birth and death rates, age-specific incidence rates, and age-specific duration of protection) using published data and maximum likelihood estimation. We assessed the validity of the model by comparing simulated incidence of invasive MenA and prevalence of MenA carriage to observed incidence and carriage data.
The model fit well to observed age- and season-specific prevalence of carriage (mean pseudo-R2 0.84) and incidence of invasive disease (mean R2 0.89). The model is able to reproduce the observed dynamics of MenA epidemics in the African meningitis belt, including seasonal increases in incidence, with large epidemics occurring every eight to twelve years. Following a mass vaccination campaign of all persons 1-29 years of age, the most effective modeled vaccination strategy is to conduct mass vaccination campaigns every 5 years for children 1-5 years of age. Less frequent campaigns covering broader age groups would also be effective, although somewhat less so. Introducing conjugate MenA vaccine into the EPI vaccination schedule at 9 months of age results in higher predicted incidence than periodic mass campaigns.
We have developed the first mathematical model of MenA in Africa to incorporate age structures and progressively waning protection over time. Our model accurately reproduces key features of MenA epidemiology in the African meningitis belt. This model can help policy makers consider vaccine program effectiveness when determining the feasibility and benefits of MenA vaccination strategies.
针对 A 群脑膜炎奈瑟菌(MenA),提供人群层面保护的最佳长期疫苗接种策略尚不清楚。我们开发了一个 A 群脑膜炎奈瑟菌在非洲脑膜炎带传播、定植和发病的年龄结构数学模型,并使用该模型探讨了各种疫苗接种策略的影响。
该模型根据年龄、感染状态和 MenA 抗体水平将模拟人群分层。我们使用已发表的数据和最大似然估计来定义模型参数(如出生率和死亡率、年龄特异性发病率以及 MenA 保护的年龄特异性持续时间)。我们通过比较模拟侵袭性 MenA 的发病率和 MenA 携带率与观察到的发病率和携带率数据,评估了模型的有效性。
模型很好地拟合了观察到的年龄和季节特异性携带率(平均伪 R2 为 0.84)和侵袭性疾病的发病率(平均 R2 为 0.89)。该模型能够再现非洲脑膜炎带中 MenA 流行的观察到的动态,包括发病率的季节性增加,每隔八到十二年就会发生大规模流行。在对所有 1-29 岁人群进行大规模疫苗接种运动后,最有效的模拟疫苗接种策略是每 5 年对 1-5 岁儿童进行大规模疫苗接种。涵盖更广泛年龄组的频率较低的疫苗接种活动也将是有效的,尽管效果稍差。在 9 个月大时将结合疫苗 MenA 引入 EPI 疫苗接种计划会导致预测发病率高于定期大规模接种运动。
我们开发了第一个包含年龄结构和随时间逐渐减弱保护的非洲 MenA 数学模型。我们的模型准确再现了非洲脑膜炎带中 MenA 流行病学的关键特征。该模型可以帮助决策者在确定 MenA 疫苗接种策略的可行性和收益时,考虑疫苗接种计划的有效性。