Suppr超能文献

肌特异性 Pikfyve 基因敲除导致葡萄糖不耐受、胰岛素抵抗、肥胖和高胰岛素血症,但不导致肌纤维类型转换。

Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity, and hyperinsulinemia but not muscle fiber-type switching.

机构信息

Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.

出版信息

Am J Physiol Endocrinol Metab. 2013 Jul 1;305(1):E119-31. doi: 10.1152/ajpendo.00030.2013. Epub 2013 May 14.

Abstract

The evolutionarily conserved kinase PIKfyve that synthesizes PtdIns5P and PtdIns(3,5)P₂ has been implicated in insulin-regulated GLUT4 translocation/glucose entry in 3T3-L1 adipocytes. To decipher PIKfyve's role in muscle and systemic glucose metabolism, here we have developed a novel mouse model with Pikfyve gene disruption in striated muscle (MPIfKO). These mice exhibited systemic glucose intolerance and insulin resistance at an early age but had unaltered muscle mass or proportion of slow/fast-twitch muscle fibers. Insulin stimulation of in vivo or ex vivo glucose uptake and GLUT4 surface translocation was severely blunted in skeletal muscle. These changes were associated with premature attenuation of Akt phosphorylation in response to in vivo insulin, as tested in young mice. Starting at 10-11 wk of age, MPIfKO mice progressively accumulated greater body weight and fat mass. Despite increased adiposity, serum free fatty acid and triglyceride levels were normal until adulthood. Together with the undetectable lipid accumulation in liver, these data suggest that lipotoxicity and muscle fiber switching do not contribute to muscle insulin resistance in MPIfKO mice. Furthermore, the 80% increase in total fat mass resulted from increased fat cell size rather than altered fat cell number. The observed profound hyperinsulinemia combined with the documented increases in constitutive Akt activation, in vivo glucose uptake, and gene expression of key enzymes for fatty acid biosynthesis in MPIfKO fat tissue suggest that the latter is being sensitized for de novo lipid anabolism. Our data provide the first in vivo evidence that PIKfyve is essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle.

摘要

进化上保守的激酶 PIKfyve 合成 PtdIns5P 和 PtdIns(3,5)P₂,与胰岛素调节的 3T3-L1 脂肪细胞中 GLUT4 易位/葡萄糖摄取有关。为了解析 PIKfyve 在肌肉和全身葡萄糖代谢中的作用,我们在这里开发了一种新型的肌肉中 Pikfyve 基因敲除(MPIfKO)的小鼠模型。这些小鼠在早期表现出全身葡萄糖不耐受和胰岛素抵抗,但肌肉质量或慢/快肌纤维比例没有改变。胰岛素刺激体内或离体葡萄糖摄取和 GLUT4 表面易位在骨骼肌中严重受损。这些变化与体内胰岛素刺激时 Akt 磷酸化的过早衰减有关,在年轻小鼠中进行了测试。从 10-11 周龄开始,MPIfKO 小鼠逐渐增加体重和脂肪量。尽管肥胖增加,但血清游离脂肪酸和甘油三酯水平在成年前正常。结合肝脏中无法检测到的脂质积累,这些数据表明脂肪毒性和肌肉纤维转换不会导致 MPIfKO 小鼠的肌肉胰岛素抵抗。此外,总脂肪量增加 80%是由于脂肪细胞大小增加而不是脂肪细胞数量改变所致。观察到的明显高胰岛素血症加上 Akt 激活的组成性增加、体内葡萄糖摄取以及 MPIfKO 脂肪组织中脂肪酸生物合成关键酶的基因表达增加表明,后者对从头脂质合成敏感。我们的数据提供了第一个体内证据,表明 PIKfyve 对于全身葡萄糖稳态和胰岛素调节的骨骼肌葡萄糖摄取/GLUT4 易位至关重要。

相似文献

7
Mechanism of glucose intolerance in mice with dominant negative mutation of CEACAM1.具有CEACAM1显性负性突变的小鼠葡萄糖不耐受机制。
Am J Physiol Endocrinol Metab. 2006 Sep;291(3):E517-24. doi: 10.1152/ajpendo.00077.2006. Epub 2006 Apr 25.

引用本文的文献

3
Roles of PIKfyve in multiple cellular pathways.PIKfyve 在多种细胞途径中的作用。
Curr Opin Cell Biol. 2022 Jun;76:102086. doi: 10.1016/j.ceb.2022.102086. Epub 2022 May 16.

本文引用的文献

2
PIKfyve and its Lipid products in health and in sickness.PIKfyve 及其脂质产物在健康和疾病中的作用。
Curr Top Microbiol Immunol. 2012;362:127-62. doi: 10.1007/978-94-007-5025-8_7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验