Warwick Systems Biology Centre and Department of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
Bioinformatics. 2013 Jun 15;29(12):1519-25. doi: 10.1093/bioinformatics/btt201. Epub 2013 May 14.
cis-regulatory DNA sequence elements, such as enhancers and silencers, function to control the spatial and temporal expression of their target genes. Although the overall levels of gene expression in large cell populations seem to be precisely controlled, transcription of individual genes in single cells is extremely variable in real time. It is, therefore, important to understand how these cis-regulatory elements function to dynamically control transcription at single-cell resolution. Recently, statistical methods have been proposed to back calculate the rates involved in mRNA transcription using parameter estimation of a mathematical model of transcription and translation. However, a major complication in these approaches is that some of the parameters, particularly those corresponding to the gene copy number and transcription rate, cannot be distinguished; therefore, these methods cannot be used when the copy number is unknown.
Here, we develop a hierarchical Bayesian model to estimate biokinetic parameters from live cell enhancer-promoter reporter measurements performed on a population of single cells. This allows us to investigate transcriptional dynamics when the copy number is variable across the population. We validate our method using synthetic data and then apply it to quantify the function of two known developmental enhancers in real time and in single cells.
Supporting information is submitted with the article.
顺式调控 DNA 序列元件,如增强子和沉默子,可调节其靶基因的时空表达。尽管在大细胞群体中,基因表达的整体水平似乎得到了精确控制,但在单细胞中,单个基因的转录在实时水平上是极其多变的。因此,了解这些顺式调控元件如何以单细胞分辨率动态控制转录是很重要的。最近,已经提出了一些统计方法,通过对转录和翻译的数学模型进行参数估计,来反向计算 mRNA 转录所涉及的速率。然而,这些方法存在一个主要的复杂性,即一些参数,特别是对应于基因拷贝数和转录率的参数,无法区分;因此,当拷贝数未知时,这些方法就不能使用。
在这里,我们开发了一个层次贝叶斯模型,用于从对单细胞群体进行的活细胞增强子-启动子报告基因测量中估计生物动力学参数。这使我们能够在拷贝数在群体中变化时研究转录动力学。我们使用合成数据验证了我们的方法,然后将其应用于实时和单细胞中定量两个已知发育增强子的功能。
支持信息随文章提供。