Suppr超能文献

野生型和疫苗株麻疹病毒诱导Ⅰ型和Ⅲ型干扰素产生的树突状细胞:缺陷干扰 RNA 的作用。

Induction of dendritic cell production of type I and type III interferons by wild-type and vaccine strains of measles virus: role of defective interfering RNAs.

机构信息

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

出版信息

J Virol. 2013 Jul;87(14):7816-27. doi: 10.1128/JVI.00261-13. Epub 2013 May 15.

Abstract

The innate immune response to viral infection frequently includes induction of type I interferons (IFN), but many viruses have evolved ways to block this response and increase virulence. In vitro studies of IFN production after infection of susceptible cells with measles virus (MeV) have often reported greater IFN synthesis after infection with vaccine than with wild-type strains of MeV. However, the possible presence in laboratory virus stocks of 5' copy-back defective interfering (DI) RNAs that induce IFN independent of the standard virus has frequently confounded interpretation of data from these studies. To further investigate MeV strain-dependent differences in IFN induction and the role of DI RNAs, monocyte-derived dendritic cells (moDCs) were infected with the wild-type Bilthoven strain and the vaccine Edmonston-Zagreb strain with and without DI RNAs. Production of type I IFN, type III IFN, and the interferon-stimulated genes (ISGs) Mx and ISG56 by infected cells was assessed with a flow cytometry-based IFN bioassay, quantitative reverse transcriptase PCR (RT-PCR), and immunoassays. Bilthoven infected moDCs less efficiently than Edmonston-Zagreb. Presence of DI RNAs in vaccine stocks resulted in greater maturation of moDCs, inhibition of virus replication, and induction of higher levels of IFN and ISGs. Production of type I IFN, type III IFN, and ISG mRNA and protein was determined by both the level of infection and the presence of DI RNAs. At the same levels of infection and in the absence of DI RNA, IFN induction was similar between wild-type and vaccine strains of MeV.

摘要

病毒感染的先天免疫反应通常包括诱导 I 型干扰素 (IFN),但许多病毒已经进化出阻止这种反应并增加毒力的方法。体外研究麻疹病毒 (MeV) 感染易感细胞后 IFN 的产生,通常报道感染疫苗株比感染野生型 MeV 株后 IFN 合成更多。然而,实验室病毒株中存在 5' 回文缺陷干扰 (DI) RNA 的可能性,这些 RNA 独立于标准病毒诱导 IFN,这常常使这些研究的数据解释变得复杂。为了进一步研究 MeV 株间诱导 IFN 差异和 DI RNA 的作用,单核细胞衍生的树突状细胞 (moDC) 用野生型 Bilthoven 株和疫苗 Edmonston-Zagreb 株及其 DI RNA 感染。用基于流式细胞术的 IFN 生物测定、定量逆转录 PCR (RT-PCR) 和免疫测定评估感染细胞产生的 I 型 IFN、III 型 IFN 和干扰素刺激基因 (ISG) Mx 和 ISG56。Bilthoven 比 Edmonston-Zagreb 更有效地感染 moDC。疫苗株中 DI RNA 的存在导致 moDC 更成熟,病毒复制受到抑制,并诱导更高水平的 IFN 和 ISG。通过感染水平和 DI RNA 的存在来确定 I 型 IFN、III 型 IFN 和 ISG mRNA 和蛋白的产生。在相同的感染水平和不存在 DI RNA 的情况下,野生型和疫苗型 MeV 之间 IFN 诱导相似。

相似文献

2
Limited in vivo production of type I or type III interferon after infection of macaques with vaccine or wild-type strains of measles virus.
J Interferon Cytokine Res. 2015 Apr;35(4):292-301. doi: 10.1089/jir.2014.0122. Epub 2014 Dec 17.
4
Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus.
J Immunol. 2007 Nov 1;179(9):6123-33. doi: 10.4049/jimmunol.179.9.6123.
6
Generation of defective interfering particles by two vaccine strains of measles virus.
Virology. 1996 Jun 15;220(2):480-4. doi: 10.1006/viro.1996.0335.
10
Wild type measles virus attenuation independent of type I IFN.
Virol J. 2008 Feb 3;5:22. doi: 10.1186/1743-422X-5-22.

引用本文的文献

3
A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations.
Microbiol Mol Biol Rev. 2022 Sep 21;86(3):e0008621. doi: 10.1128/mmbr.00086-21. Epub 2022 Jun 23.
5
Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes.
PLoS Pathog. 2021 Feb 8;17(2):e1009110. doi: 10.1371/journal.ppat.1009110. eCollection 2021 Feb.
7
Inhibition of Nipah Virus by Defective Interfering Particles.
J Infect Dis. 2020 May 11;221(Suppl 4):S460-S470. doi: 10.1093/infdis/jiz564.
8
Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises.
Vaccines (Basel). 2020 Jan 21;8(1):36. doi: 10.3390/vaccines8010036.
9
Defective viral genomes are key drivers of the virus-host interaction.
Nat Microbiol. 2019 Jul;4(7):1075-1087. doi: 10.1038/s41564-019-0465-y. Epub 2019 Jun 3.
10
Understanding the causes and consequences of measles virus persistence.
F1000Res. 2018 Feb 28;7:237. doi: 10.12688/f1000research.12094.1. eCollection 2018.

本文引用的文献

2
Measles virus C protein interferes with Beta interferon transcription in the nucleus.
J Virol. 2012 Jan;86(2):796-805. doi: 10.1128/JVI.05899-11. Epub 2011 Nov 9.
4
Defective interfering virus protects elderly mice from influenza.
Virol J. 2011 May 9;8:212. doi: 10.1186/1743-422X-8-212.
5
Strain-to-strain difference of V protein of measles virus affects MDA5-mediated IFN-β-inducing potential.
Mol Immunol. 2011 Jan;48(4):497-504. doi: 10.1016/j.molimm.2010.10.006. Epub 2010 Nov 10.
6
Interplay of measles virus with early induced cytokines reveals different wild type phenotypes.
Virus Res. 2011 Jan;155(1):195-202. doi: 10.1016/j.virusres.2010.10.005. Epub 2010 Oct 13.
8
Pattern recognition receptors and inflammation.
Cell. 2010 Mar 19;140(6):805-20. doi: 10.1016/j.cell.2010.01.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验