Schumacher Linus J, Woolley Thomas E, Baker Ruth E
Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St. Giles', Oxford, OX1 3LB, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042719. doi: 10.1103/PhysRevE.87.042719. Epub 2013 Apr 25.
We examine the ability of intrinsic noise to produce complex temporal dynamics in Turing pattern formation systems, with particular emphasis on the Schnakenberg kinetics. Using power spectral methods, we characterize the behavior of the system using stochastic simulations at a wide range of points in parameter space and compare with analytical approximations. Specifically, we investigate whether polarity switching of stochastic patterns occurs at a defined frequency. We find that it can do so in individual realizations of a stochastic simulation, but that the frequency is not defined consistently across realizations in our samples of parameter space. Further, we examine the effect of noise on deterministically predicted traveling waves and find them increased in amplitude and decreased in speed.
我们研究了内在噪声在图灵模式形成系统中产生复杂时间动态的能力,特别关注施纳肯贝格动力学。使用功率谱方法,我们通过在参数空间的广泛点上进行随机模拟来表征系统的行为,并与解析近似进行比较。具体而言,我们研究随机模式的极性切换是否在定义频率下发生。我们发现,在随机模拟的单个实现中可以发生这种情况,但在我们参数空间样本的不同实现中,频率并非一致定义。此外,我们研究了噪声对确定性预测行波的影响,发现它们的幅度增大而速度减小。