Suppr超能文献

细菌扩展中的化学战和生存策略。

Chemical warfare and survival strategies in bacterial range expansions.

机构信息

Arnold Sommerfeld Center for Theoretical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, , Theresienstraße 37, Munich 80333, Germany.

出版信息

J R Soc Interface. 2014 May 7;11(96):20140172. doi: 10.1098/rsif.2014.0172. Print 2014 Jul 6.

Abstract

Dispersal of species is a fundamental ecological process in the evolution and maintenance of biodiversity. Limited control over ecological parameters has hindered progress in understanding of what enables species to colonize new areas, as well as the importance of interspecies interactions. Such control is necessary to construct reliable mathematical models of ecosystems. In our work, we studied dispersal in the context of bacterial range expansions and identified the major determinants of species coexistence for a bacterial model system of three Escherichia coli strains (toxin-producing, sensitive and resistant). Genetic engineering allowed us to tune strain growth rates and to design different ecological scenarios (cyclic and hierarchical). We found that coexistence of all strains depended on three strongly interdependent factors: composition of inoculum, relative strain growth rates and effective toxin range. Robust agreement between our experiments and a thoroughly calibrated computational model enabled us to extrapolate these intricate interdependencies in terms of phenomenological biodiversity laws. Our mathematical analysis also suggested that cyclic dominance between strains is not a prerequisite for coexistence in competitive range expansions. Instead, robust three-strain coexistence required a balance between growth rates and either a reduced initial ratio of the toxin-producing strain, or a sufficiently short toxin range.

摘要

物种扩散是进化和维持生物多样性的基本生态过程。对生态参数的控制有限,阻碍了对物种如何能够殖民新区域的理解,以及物种间相互作用的重要性。这种控制对于构建可靠的生态系统数学模型是必要的。在我们的工作中,我们研究了细菌范围扩张背景下的扩散,并确定了三个大肠杆菌菌株(产毒、敏感和耐药)细菌模型系统中物种共存的主要决定因素。遗传工程使我们能够调整菌株的生长速度,并设计不同的生态场景(循环和层次)。我们发现,所有菌株的共存都取决于三个强相互依赖的因素:接种物的组成、相对菌株的生长速度和有效毒素范围。我们的实验与经过彻底校准的计算模型之间的稳健一致性,使我们能够根据现象生物多样性定律来推断这些复杂的相互关系。我们的数学分析还表明,菌株之间的循环优势不是竞争范围扩张中共存的前提条件。相反,稳健的三菌株共存需要在生长速度和产毒菌株的初始比例降低之间,或毒素范围足够短之间取得平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0001/4032534/e03da1b5bdaf/rsif20140172-g1.jpg

相似文献

1
Chemical warfare and survival strategies in bacterial range expansions.
J R Soc Interface. 2014 May 7;11(96):20140172. doi: 10.1098/rsif.2014.0172. Print 2014 Jul 6.
2
Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli.
Nat Commun. 2020 Nov 27;11(1):6055. doi: 10.1038/s41467-020-19963-8.
3
Counteraction of antibiotic production and degradation stabilizes microbial communities.
Nature. 2015 May 28;521(7553):516-9. doi: 10.1038/nature14485.
4
Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem.
Nat Chem Biol. 2009 Dec;5(12):929-35. doi: 10.1038/nchembio.244. Epub 2009 Nov 1.
5
Bacterial coexistence driven by motility and spatial competition.
Nature. 2020 Feb;578(7796):588-592. doi: 10.1038/s41586-020-2033-2. Epub 2020 Feb 19.
6
Dispersal network heterogeneity promotes species coexistence in hierarchical competitive communities.
Ecol Lett. 2021 Jan;24(1):50-59. doi: 10.1111/ele.13619. Epub 2020 Oct 7.
7
Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors.
Nature. 2002 Jul 11;418(6894):171-4. doi: 10.1038/nature00823.
8
Evolutionary contribution to coexistence of competitors in microbial food webs.
Proc Biol Sci. 2017 Oct 11;284(1864). doi: 10.1098/rspb.2017.0415.
9
Mechanics limits ecological diversity and promotes heterogeneity in confined bacterial communities.
Proc Natl Acad Sci U S A. 2024 May 14;121(20):e2322321121. doi: 10.1073/pnas.2322321121. Epub 2024 May 10.
10
Calibration and analysis of genome-based models for microbial ecology.
Elife. 2015 Oct 16;4:e08208. doi: 10.7554/eLife.08208.

引用本文的文献

1
Competition quenching strategies reduce antibiotic tolerance in polymicrobial biofilms.
NPJ Biofilms Microbiomes. 2024 Mar 19;10(1):23. doi: 10.1038/s41522-024-00489-6.
3
Universal scaling of extinction time in stochastic evolutionary dynamics.
Sci Rep. 2022 Dec 27;12(1):22403. doi: 10.1038/s41598-022-27102-0.
4
Environmental and ecological controls of the spatial distribution of microbial populations in aggregates.
PLoS Comput Biol. 2022 Dec 19;18(12):e1010807. doi: 10.1371/journal.pcbi.1010807. eCollection 2022 Dec.
5
The territorial nature of aggression in biofilms.
Front Microbiol. 2022 Aug 23;13:878223. doi: 10.3389/fmicb.2022.878223. eCollection 2022.
6
The plant host environment influences competitive interactions between bacterial pathogens.
Environ Microbiol Rep. 2022 Oct;14(5):785-794. doi: 10.1111/1758-2229.13103. Epub 2022 Jun 14.
7
Modeling endonuclease colicin-like bacteriocin operons as 'genetic arms' in plasmid-genome conflicts.
Mol Genet Genomics. 2022 May;297(3):763-777. doi: 10.1007/s00438-022-01884-4. Epub 2022 Mar 23.
8
Founder cell configuration drives competitive outcome within colony biofilms.
ISME J. 2022 Jun;16(6):1512-1522. doi: 10.1038/s41396-022-01198-8. Epub 2022 Feb 5.
9
Higher-order effects, continuous species interactions, and trait evolution shape microbial spatial dynamics.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2020956119.

本文引用的文献

1
Genetic drift opposes mutualism during spatial population expansion.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1037-42. doi: 10.1073/pnas.1313285111. Epub 2014 Jan 6.
2
High variation of fluorescence protein maturation times in closely related Escherichia coli strains.
PLoS One. 2013 Oct 14;8(10):e75991. doi: 10.1371/journal.pone.0075991. eCollection 2013.
3
Coexistence and survival in conservative Lotka-Volterra networks.
Phys Rev Lett. 2013 Apr 19;110(16):168106. doi: 10.1103/PhysRevLett.110.168106.
4
Spatial population expansion promotes the evolution of cooperation in an experimental Prisoner's Dilemma.
Curr Biol. 2013 May 20;23(10):919-23. doi: 10.1016/j.cub.2013.04.026. Epub 2013 May 9.
5
Range expansion promotes cooperation in an experimental microbial metapopulation.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7354-9. doi: 10.1073/pnas.1217517110. Epub 2013 Apr 8.
8
Diversity of interaction types and ecological community stability.
Science. 2012 Jul 20;337(6092):349-51. doi: 10.1126/science.1220529.
9
Selective sweeps in growing microbial colonies.
Phys Biol. 2012;9(2):026008. doi: 10.1088/1478-3975/9/2/026008. Epub 2012 Apr 4.
10
Growth dynamics and the evolution of cooperation in microbial populations.
Sci Rep. 2012;2:281. doi: 10.1038/srep00281. Epub 2012 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验