Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
Phys Rev Lett. 2013 Apr 26;110(17):170602. doi: 10.1103/PhysRevLett.110.170602. Epub 2013 Apr 24.
Floquet theory is a powerful tool in the analysis of many physical phenomena, and extended to spatial coordinates provides the basis for Bloch's theorem. However, in its original formulation it is limited to linear systems with periodic coefficients. Here, we extend the theory by proving a theorem for the general class of systems including linear operators commuting with the period-shift operator. The present theorem greatly expands the range of applicability of Floquet theory to a multitude of phenomena that were previously inaccessible with this type of analysis, such as dynamical systems with memory. As an important extension, we also prove Bloch's theorem for nonlocal potentials.
Floquet 理论是分析许多物理现象的有力工具,将其扩展到空间坐标为 Bloch 定理提供了基础。然而,在其原始形式中,它仅限于具有周期系数的线性系统。在这里,我们通过证明一个对于包括与移位算子可交换的线性算子的一般系统类的定理来扩展该理论。这个定理极大地扩展了 Floquet 理论的适用范围,使其适用于许多以前无法用这种分析方法处理的现象,例如具有记忆的动力系统。作为一个重要的扩展,我们还证明了 Bloch 定理对于非局域势的适用性。