Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 - Hoang Quoc Viet Rd, Hanoi, Viet Nam.
Vet Microbiol. 2013 Aug 30;165(3-4):341-8. doi: 10.1016/j.vetmic.2013.04.021. Epub 2013 Apr 28.
The emergence of highly pathogenic avian influenza (HPAI) H5N1 viruses and the risk of a human pandemic have highlighted the need for advance stockpiling of vaccine. Current vaccines may be sub-optimally matched to the actual pandemic virus due to the rapid dissemination and ongoing evolution of avian H5N1 viruses. We report here the evaluation of efficacy of NIBRG-14 vaccine (clade 1 A/Vietnam/1194/2004) against the H5N1 HPAI virus strains circulating in Vietnam. The birds were either vaccinated with a single or booster dose of vaccine by subcutaneous injection; then challenged with three H5N1 HPAI viruses (clade 1, clade 2.3.2.1a and clade 2.3.2.1b) at day 21 post-vaccination (p. v.). The results showed that NIBRG-14 vaccine protected birds from clade 1 and clade 2.3.2.1a infections. Notably, we observed that NIGRG-14 vaccine did not confer protection against clade 2.3.2.1b challenge virus. To get new insights of how H5N1 clade 2.3.2.1b (A/Duck/QuangNgai/1037/11) virus can escape from the host immune response induced by the vaccine, we further analyzed the HA gene - a key virulence determinant of the virus. Amino acid sequence analysis indicated that this virus contained the sequence SPQRERRRK-R/G at the cleavage site in the HA molecule, indicating its high virulence. Additionally, we identified numerous mutations with amino acid substitutions in the hemagglutinin: M226I, I239S located at N-link glycosylation site and 2H, 45N, 53K 120D, 133A and 14N mutations at antigenic site, which can affect receptor specificity as well as viral pathogenicity. Notably, I239S and S133A mutations are unique to A/Duck/QuangNgai/1037/2011, suggesting that it may involve in the virus' ability to evade the host immune system. Taken together, phylogenetic analysis showed that continual mutations in the HA gene may have generated a novel antigenic strain and that probably changed the virulence of the virus and made the H5N1 clade 2.3.2.1b resistant to NIBRG-14 vaccine.
高致病性禽流感(HPAI)H5N1 病毒的出现以及人类大流行的风险突显了提前储备疫苗的必要性。由于禽流感 H5N1 病毒的快速传播和持续进化,当前的疫苗可能与实际的大流行病毒不太匹配。我们在此报告了 NIBRG-14 疫苗(1 类/越南/1194/2004 分支)对在越南流行的 H5N1 HPAI 病毒株的疗效评估。这些鸟类通过皮下注射接受了单剂量或加强剂量的疫苗接种;然后在疫苗接种后第 21 天(p. v.)用三种 H5N1 HPAI 病毒(1 类、2.3.2.1a 类和 2.3.2.1b 类)进行攻毒。结果表明,NIBRG-14 疫苗可预防鸟类感染 1 类和 2.3.2.1a 类病毒。值得注意的是,我们观察到 NIGRG-14 疫苗不能预防 2.3.2.1b 类(鸭/广宁/1037/11)挑战病毒。为了深入了解 H5N1 2.3.2.1b 类病毒(鸭/广宁/1037/11)如何逃避疫苗诱导的宿主免疫反应,我们进一步分析了 HA 基因——病毒的关键毒力决定因素。氨基酸序列分析表明,该病毒的 HA 分子在裂解位点含有 SPQRERRRK-R/G 序列,表明其具有高毒力。此外,我们还发现血凝素中存在许多氨基酸取代的突变:位于 N 连接糖基化位点的 M226I 和 I239S,以及抗原位点的 2H、45N、53K、120D、133A 和 14N 突变,这些突变会影响受体特异性和病毒的致病性。值得注意的是,I239S 和 S133A 突变是鸭/广宁/1037/2011 的特有突变,表明这可能与病毒逃避宿主免疫系统的能力有关。总之,系统发育分析表明,HA 基因的持续突变可能产生了一种新的抗原性株,这可能改变了病毒的毒力,使 H5N1 2.3.2.1b 类对 NIBRG-14 疫苗产生抗性。