Suppr超能文献

金属氧化物纳米粒子的构效关系研究进展。

Development of structure-activity relationship for metal oxide nanoparticles.

机构信息

California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA.

出版信息

Nanoscale. 2013 Jun 21;5(12):5644-53. doi: 10.1039/c3nr01533e.

Abstract

Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L(-1) and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.

摘要

采用基于剂量-反应分析和共识自组织映射聚类的指标,研究了金属氧化物纳米粒子(NPs)毒性的纳米材料结构-活性关系(nano-SAR)。NP 细胞毒性数据集包括毒性谱,由人支气管上皮(BEAS-2B)和鼠髓样(RAW 264.7)细胞的七种不同测定组成,浓度范围为 0.39-100 mg L(-1),暴露时间长达 24 h,涉及 24 种不同的金属氧化物 NPs。基于三十个 NP 描述符的初始池,评估了各种 nano-SAR 构建模型。导带能量和离子指数(通常与水合焓相关)被确定为合适的 NP 描述符,与金属氧化物 NPs 和金属离子的毒性机制一致。使用支持向量机(SVM)模型构建的、具有验证稳健性的最佳 nano-SAR 模型,使用上述两个描述符,其分类精度约为 94%。以 80%的合理置信水平建立了本数据的适用性域。鉴于 nano-SAR 在决策中的潜在作用,即纳米粒子对环境的影响,SVM nano-SAR 的类概率能够在不同的假阴性相对于假阳性预测的接受水平下,构建关于毒性分类的决策边界。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验