Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA.
Int J Hyperthermia. 2013 Jun;29(4):324-35. doi: 10.3109/02656736.2013.798036. Epub 2013 May 21.
A generalised polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided laser-induced thermal therapies (MRgLITT).
The Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n = 4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms.
Optical parameters provided the highest variance in the model output (peak standard deviation: anisotropy 3.51 °C, absorption 2.94 °C, scattering 1.84 °C, conductivity 1.43 °C, and perfusion 0.94 °C). Further, within the statistical sense considered, a non-linear model of the temperature and damage-dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data.
Given parameter uncertainties and mathematical modelling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning.
利用广义多项式混沌(gPC)方法将本构参数不确定性纳入到生物传热现象的 Pennes 表示中。针对规划磁共振引导激光诱导热疗(MRgLITT),对数学模型的随机温度预测进行了严格的磁共振测温(MRTI)数据评估。
Pennes 生物传热模型与激光组织相互作用的扩散理论近似相结合,作为基本确定性内核。概率敏感性研究用于确定对温度输出变化影响最大的参数。将温度预测的置信区间与在体犬(n=4)MRgLITT 实验期间获得的磁共振温度成像(MRTI)进行比较。使用概率线性和时间分布以及 2-D 60°C 等温线,将 gPC 预测与 MRTI 数据进行定量比较。
光学参数对模型输出的变化影响最大(峰值标准偏差:各向异性 3.51°C、吸收 2.94°C、散射 1.84°C、传导率 1.43°C 和灌注 0.94°C)。此外,在所考虑的统计意义内,温度和损伤依赖性灌注、吸收和散射的非线性模型在 gPC 线性方法的置信区间内得到了捕获。使用具有主要敏感性的参数进行多元随机模型预测与实验 MRTI 数据吻合良好。
考虑到参数不确定性和 Pennes 生物传热模型的数学建模近似,该统计框架对治疗性加热进行了保守估计,并且有潜力作为热疗规划的计算预测工具。