Suppr超能文献

利用捕获和高通量测序技术快速多重基因分型简单串联重复。

Rapid multiplexed genotyping of simple tandem repeats using capture and high-throughput sequencing.

机构信息

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.

出版信息

Hum Mutat. 2013 Sep;34(9):1304-11. doi: 10.1002/humu.22359. Epub 2013 Jun 17.

Abstract

Although simple tandem repeats (STRs) comprise ~2% of the human genome and represent an important source of polymorphism, this class of variation remains understudied. We have developed a cost-effective strategy for performing targeted enrichment of STR regions that utilizes capture probes targeting the flanking sequences of STR loci, enabling specific capture of DNA fragments containing STRs for subsequent high-throughput sequencing. Utilizing a capture design targeting 6,243 STR loci <94 bp and multiplexing eight individuals in a single Illumina HiSeq2000 sequencing lane we were able to call genotypes in at least one individual for 67.5% of the targeted STRs. We observed a strong relationship between (G+C) content and genotyping rate. STRs with moderate (G+C) content were recovered with >90% success rate, whereas only 12% of STRs with ≥ 80% (G+C) were genotyped in our assay. Analysis of a parent-offspring trio, complete hydatidiform mole samples, repeat analyses of the same individual, and Sanger sequencing-based validation indicated genotyping error rates between 7.6% and 12.4%. The majority of such errors were a single repeat unit at mono- or dinucleotide repeats. Altogether, our STR capture assay represents a cost-effective method that enables multiplexed genotyping of thousands of STR loci suitable for large-scale population studies.

摘要

尽管简单串联重复(STRs)仅占人类基因组的~2%,但却是多态性的重要来源,然而这一类变异仍未得到充分研究。我们开发了一种经济高效的靶向富集 STR 区域的策略,该策略利用靶向 STR 基因座侧翼序列的捕获探针,实现了包含 STR 的 DNA 片段的特异性捕获,从而进行后续的高通量测序。利用靶向 6,243 个长度小于 94 bp 的 STR 基因座的捕获设计,以及在单个 Illumina HiSeq2000 测序通道中对 8 个个体进行多重分析,我们能够对至少一个个体的 67.5%的靶向 STR 进行基因分型。我们观察到(G+C)含量与基因分型率之间存在很强的关系。(G+C)含量适中的 STR 以超过 90%的成功率回收,而我们的检测中只有 12%的(G+C)含量≥80%的 STR 进行了基因分型。对一个亲子三代、完全葡萄胎样本、同一个体的重复分析以及基于 Sanger 测序的验证的分析表明,基因分型错误率在 7.6%到 12.4%之间。这些错误大多是单核苷酸或二核苷酸重复的单个重复单元。总之,我们的 STR 捕获分析代表了一种经济高效的方法,可实现数千个 STR 基因座的多重基因分型,适合大规模的人群研究。

相似文献

1
Rapid multiplexed genotyping of simple tandem repeats using capture and high-throughput sequencing.
Hum Mutat. 2013 Sep;34(9):1304-11. doi: 10.1002/humu.22359. Epub 2013 Jun 17.
2
Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.
Genome Res. 2015 May;25(5):736-49. doi: 10.1101/gr.185892.114. Epub 2015 Mar 30.
5
lobSTR: A short tandem repeat profiler for personal genomes.
Genome Res. 2012 Jun;22(6):1154-62. doi: 10.1101/gr.135780.111. Epub 2012 Apr 20.
6
A massively parallel strategy for STR marker development, capture, and genotyping.
Nucleic Acids Res. 2017 Sep 6;45(15):e142. doi: 10.1093/nar/gkx574.
7
Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing.
Bioinformatics. 2014 Mar 15;30(6):815-22. doi: 10.1093/bioinformatics/btt647. Epub 2013 Nov 8.
9
Use of the LUS in sequence allele designations to facilitate probabilistic genotyping of NGS-based STR typing results.
Forensic Sci Int Genet. 2018 May;34:197-205. doi: 10.1016/j.fsigen.2018.02.016. Epub 2018 Feb 21.
10
Sequencing and characterizing short tandem repeats in the human genome.
Nat Rev Genet. 2024 Jul;25(7):460-475. doi: 10.1038/s41576-024-00692-3. Epub 2024 Feb 16.

引用本文的文献

1
Short Tandem Repeats as a High-Resolution Marker for Capturing Recent Orangutan Population Evolution.
Front Bioinform. 2021 Aug 16;1:695784. doi: 10.3389/fbinf.2021.695784. eCollection 2021.
2
6
Tandem repeats mediating genetic plasticity in health and disease.
Nat Rev Genet. 2018 May;19(5):286-298. doi: 10.1038/nrg.2017.115. Epub 2018 Feb 5.
8
High-depth, high-accuracy microsatellite genotyping enables precision lung cancer risk classification.
Oncogene. 2017 Nov 16;36(46):6383-6390. doi: 10.1038/onc.2017.256. Epub 2017 Jul 31.
9
Systematic Profiling of Short Tandem Repeats in the Cattle Genome.
Genome Biol Evol. 2017 Jan 1;9(1):20-31. doi: 10.1093/gbe/evw256.

本文引用的文献

1
Accurate human microsatellite genotypes from high-throughput resequencing data using informed error profiles.
Nucleic Acids Res. 2013 Jan 7;41(1):e32. doi: 10.1093/nar/gks981. Epub 2012 Oct 22.
2
Mechanisms of formation of structural variation in a fully sequenced human genome.
Hum Mutat. 2013 Feb;34(2):345-54. doi: 10.1002/humu.22240. Epub 2012 Nov 19.
3
Estimating the human mutation rate using autozygosity in a founder population.
Nat Genet. 2012 Nov;44(11):1277-81. doi: 10.1038/ng.2418. Epub 2012 Sep 23.
4
A direct characterization of human mutation based on microsatellites.
Nat Genet. 2012 Oct;44(10):1161-5. doi: 10.1038/ng.2398. Epub 2012 Aug 23.
6
lobSTR: A short tandem repeat profiler for personal genomes.
Genome Res. 2012 Jun;22(6):1154-62. doi: 10.1101/gr.135780.111. Epub 2012 Apr 20.
7
Analysis of microsatellite variation in Drosophila melanogaster with population-scale genome sequencing.
PLoS One. 2012;7(3):e33036. doi: 10.1371/journal.pone.0033036. Epub 2012 Mar 12.
8
Stress-induced modulators of repeat instability and genome evolution.
J Mol Microbiol Biotechnol. 2011;21(1-2):36-44. doi: 10.1159/000332748. Epub 2012 Jan 13.
9
Normalized Affymetrix expression data are biased by G-quadruplex formation.
Nucleic Acids Res. 2012 Apr;40(8):3307-15. doi: 10.1093/nar/gkr1230. Epub 2011 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验