School of Biochemistry, University of Bristol, Bristol, UK.
Hum Reprod. 2013 Sep;28(9):2332-42. doi: 10.1093/humrep/det237. Epub 2013 May 21.
Can selenium (Se) independent, epididymal-specific glutathione peroxidase 5 (GPX5) protect CHO-K1 cells from oxidative damage and, more specifically, from lipid peroxidation and DNA mutation?
CHO-K1 cells expressing GPX5 have increased resistance to oxidative challenge and, more specifically, decreased levels of lipid peroxidation and decreased levels of the downstream DNA lesion 8-oxo-7,8-dihydroguanine (8-oxodG) compared with control cells.
GPX5 associates with sperm during transit of the epididymis, and has been postulated to protect sperm from peroxide-mediated attack. However, its function as an active glutathione peroxidase has been questioned due to substitution of the classical selenocysteine residue at its active site. Indirect evidence for a functional role for GPX5 has been provided by in vivo studies, in particular from the GPX5 knockout mouse whereby offspring sired by GPX5(-/-) males have a higher rate of spontaneous abortion and developmental defects, attributed to increased oxidative injury (8-oxodG) to sperm DNA, but only when the GPX5(-/-) males are over 1 year of age. Interestingly, we have previously shown severely reduced levels of GPX5 in humans.
STUDY DESIGN, SIZE, DURATION: To look more directly at its role in protection against oxidative damage, we have used an in vitro system, generating a CHO-K1 mammalian cell line expressing recombinant rat GPX5.
PARTICIPANTS/MATERIALS, SETTING, METHODS: We have used the recombinant CHO-K1 cells to determine whether GPX5 is able to protect these cells from an administered oxidative challenge, using a range of approaches. We compared the viability of GPX5-expressing cells with control cells by both MTT and trypan blue exclusion assays. We next investigated whether GPX5 protects the cells specifically from lipid peroxidation, by using the fluorescent reporter molecule C11-BODIPY(581/591), and thus from downstream DNA mutation, by comparing levels of the DNA lesion 8-oxodG. We also investigated whether GPX5 can be transferred to rat sperm via epididymosomes.
GPX5-expressing CHO-K1 cells had increased viability compared with control cells following oxidative challenge (P < 0.005). We also found that GPX5-expressing CHO-K1 cells had significantly lower levels of C11-BODIPY(581/591) oxidation, and hence lipid peroxidation, compared with control cells. Levels of 8-oxodG DNA damage were also markedly lower in the nuclei of GPX5-expressing cells than in control cells. Finally, we showed that GPX5 can be transferred to rat sperm via epididymosomes.
LIMITATIONS, REASONS FOR CAUTION: GPX5 is not active in glutathione peroxidase assays using H₂O₂ as the substrate. However, the related non-mammalian Se-independent GPXs show preference for electron donors other than glutathione, with a number utilizing thioredoxin as a reducing equivalent. Hence, the in vitro activity of GPX5 needs to be assessed using a range of alternative substrates and electron donors. GPX5 is secreted by the epididymis and associates with the sperm plasma membrane. We showed that this transfer can occur via epididymosomes; however, the mechanism for transfer and the identity of a potential binding partner in the sperm membrane needs to be determined. Finally, our study utilized an in vitro system that needs to be translated to human sperm.
Our study supports an important role for GPX5 as an antioxidant, possibly acting as a phospholipid hydroperoxidase and participating in the maintenance of cell and DNA integrity.
硒(Se)是否可以独立于附睾特异性谷胱甘肽过氧化物酶 5(GPX5)来保护 CHO-K1 细胞免受氧化损伤,更具体地说,是否可以防止脂质过氧化和 DNA 突变?
与对照细胞相比,表达 GPX5 的 CHO-K1 细胞对氧化应激具有更高的抗性,更具体地说,脂质过氧化水平降低,下游 DNA 损伤 8-氧代-7,8-二氢鸟嘌呤(8-oxodG)水平降低。
GPX5 在精子通过附睾的运输过程中与精子结合,并被推测可以防止精子受到过氧化物介导的攻击。然而,由于其活性位点处经典的硒代半胱氨酸残基被取代,其作为活性谷胱甘肽过氧化物酶的功能受到质疑。间接证据表明 GPX5 具有功能作用,特别是通过 GPX5 敲除小鼠提供,其中 GPX5(-/-) 雄性产生的后代自发性流产和发育缺陷的发生率更高,归因于精子 DNA 中氧化损伤(8-oxodG)增加,但仅当 GPX5(-/-) 雄性超过 1 岁时。有趣的是,我们之前在人类中发现 GPX5 水平严重降低。
研究设计、规模、持续时间:为了更直接地研究其在保护细胞免受氧化损伤中的作用,我们使用了 CHO-K1 哺乳动物细胞系,该细胞系表达重组大鼠 GPX5。
参与者/材料、设置、方法:我们使用重组 CHO-K1 细胞通过一系列方法来确定 GPX5 是否能够保护这些细胞免受给予的氧化应激。我们通过 MTT 和台盼蓝排除试验比较了表达 GPX5 的细胞与对照细胞的活力。接下来,我们通过比较 DNA 损伤 8-oxodG 的水平,研究了 GPX5 是否可以特异性地保护细胞免受脂质过氧化作用,使用荧光报告分子 C11-BODIPY(581/591)。我们还研究了 GPX5 是否可以通过附睾小体转移到大鼠精子上。
与对照细胞相比,氧化应激后表达 GPX5 的 CHO-K1 细胞的活力更高(P < 0.005)。我们还发现,与对照细胞相比,表达 GPX5 的 CHO-K1 细胞的 C11-BODIPY(581/591)氧化水平,即脂质过氧化水平显著降低。表达 GPX5 的细胞的细胞核中的 8-oxodG DNA 损伤水平也明显低于对照细胞。最后,我们表明 GPX5 可以通过附睾小体转移到大鼠精子上。
局限性、谨慎的原因:使用 H₂O₂作为底物的谷胱甘肽过氧化物酶测定中,GPX5 没有活性。然而,相关的非哺乳动物 Se 独立的 GPXs 对除了谷胱甘肽之外的电子供体表现出偏好,许多电子供体利用硫氧还蛋白作为还原当量。因此,需要使用一系列替代底物和电子供体来评估 GPX5 的体外活性。GPX5 由附睾分泌并与精子质膜结合。我们表明这种转移可以通过附睾小体发生;然而,需要确定转移的机制和精子质膜中的潜在结合伴侣的身份。最后,我们的研究利用了需要转化为人类精子的体外系统。
我们的研究支持 GPX5 作为抗氧化剂的重要作用,可能作为磷脂氢过氧化物酶发挥作用,并参与细胞和 DNA 完整性的维持。