College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China.
Sensors (Basel). 2013 May 22;13(5):6832-64. doi: 10.3390/s130506832.
In this paper, a human electrocardiogram (ECG) identification system based on ensemble empirical mode decomposition (EEMD) is designed. A robust preprocessing method comprising noise elimination, heartbeat normalization and quality measurement is proposed to eliminate the effects of noise and heart rate variability. The system is independent of the heart rate. The ECG signal is decomposed into a number of intrinsic mode functions (IMFs) and Welch spectral analysis is used to extract the significant heartbeat signal features. Principal component analysis is used reduce the dimensionality of the feature space, and the K-nearest neighbors (K-NN) method is applied as the classifier tool. The proposed human ECG identification system was tested on standard MIT-BIH ECG databases: the ST change database, the long-term ST database, and the PTB database. The system achieved an identification accuracy of 95% for 90 subjects, demonstrating the effectiveness of the proposed method in terms of accuracy and robustness.
本文设计了一种基于集合经验模态分解(EEMD)的人体心电图(ECG)识别系统。提出了一种鲁棒的预处理方法,包括噪声消除、心跳归一化和质量测量,以消除噪声和心率变异性的影响。该系统不依赖于心率。将 ECG 信号分解为若干固有模态函数(IMF),并采用 Welch 谱分析提取重要的心跳信号特征。主成分分析用于降低特征空间的维数,K-最近邻(K-NN)方法作为分类器工具。在标准的麻省理工学院生物医学工程研究所(MIT-BIH)ECG 数据库上,对所提出的人体 ECG 识别系统进行了测试:ST 变化数据库、长期 ST 数据库和 PTB 数据库。该系统在 90 名受试者中实现了 95%的识别准确率,证明了该方法在准确性和鲁棒性方面的有效性。