Suppr超能文献

使用非线性分解方法和支持向量机对心电图心拍进行分类。

Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine.

机构信息

School of Electronics Engineering, VIT University, Vellore 632014, India.

出版信息

Comput Biol Med. 2017 Aug 1;87:271-284. doi: 10.1016/j.compbiomed.2017.06.006. Epub 2017 Jun 16.

Abstract

Classifying electrocardiogram (ECG) heartbeats for arrhythmic risk prediction is a challenging task due to minute variations in the amplitude, duration and morphology of the ECG signal. In this paper, we propose two feature extraction approaches to classify five types of heartbeats: normal, premature ventricular contraction, atrial premature contraction, left bundle branch block and right bundle branch block. In the first approach, ECG beats are decomposed into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD). Later four parameters, namely the sample entropy, coefficient of variation, singular values, and band power of IMFs are extracted as features. In the second approach, the same features are computed from IMFs extracted using an empirical mode decomposition (EMD) algorithm. The features obtained from the two approaches are independently fed to the sequential minimal optimization-support vector machine (SMO-SVM) for classification. We used two arrhythmia databases for our evaluation: MIT-BIH and INCART. We compare the proposed approaches with existing methods using the performance measures given by the average values of (i) specificity, (ii) sensitivity, and (iii) accuracy. The first approach demonstrates significant performance with 98.01% sensitivity, 99.49% specificity, and 99.20% accuracy for the MIT-BIH database and 95.15% sensitivity, 98.37% specificity, and 97.57% accuracy for the INCART database.

摘要

由于心电图 (ECG) 信号的幅度、持续时间和形态存在微小变化,因此对心律失常风险进行分类是一项具有挑战性的任务。在本文中,我们提出了两种特征提取方法来对五种类型的心跳进行分类:正常、室性早搏、房性早搏、左束支传导阻滞和右束支传导阻滞。在第一种方法中,使用集合经验模态分解 (EEMD) 将 ECG 心跳分解为固有模态函数 (IMF)。然后提取四个参数,即 IMF 的样本熵、变异系数、奇异值和频带功率作为特征。在第二种方法中,使用经验模态分解 (EMD) 算法提取的 IMF 计算相同的特征。从两种方法获得的特征分别由顺序最小优化支持向量机 (SMO-SVM) 进行分类。我们使用两个心律失常数据库进行评估:MIT-BIH 和 INCART。我们使用平均特异性、敏感性和准确性的性能指标来比较所提出的方法与现有方法。对于 MIT-BIH 数据库,第一种方法的敏感性、特异性和准确性分别为 98.01%、99.49%和 99.20%,对于 INCART 数据库,敏感性、特异性和准确性分别为 95.15%、98.37%和 97.57%,表现出显著的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验