Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101,USA.
J Neurosci. 2013 May 22;33(21):9122-39. doi: 10.1523/JNEUROSCI.0791-13.2013.
The mammalian neocortical progenitor cell niche is composed of a diverse repertoire of neuroepithelial cells, radial glia (RG), and intermediate neurogenic progenitors (INPs). Previously, live-cell imaging experiments have proved crucial in identifying these distinct progenitor populations, especially INPs, which amplify neural output by undergoing additional rounds of proliferation before differentiating into new neurons. INPs also provide feedback to the RG pool by serving as a source of Delta-like 1 (Dll1), a key ligand for activating Notch signaling in neighboring cells, a well-known mechanism for maintaining RG identity. While much is known about Dll1-Notch signaling at the molecular level, little is known about how this cell-cell contact dependent feedback is transmitted at the cellular level. To investigate how RG and INPs might interact to convey Notch signals, we used high-resolution live-cell multiphoton microscopy (MPM) to directly observe cellular interactions and dynamics, in conjunction with Notch-pathway specific reporters in the neocortical neural stem cell niche in organotypic brain slices from embryonic mice. We found that INPs and RG interact via dynamic and transient elongate processes, some apparently long-range (extending from the subventricular zone to the ventricular zone), and some short-range (filopodia-like). Gene expression profiling of RG and INPs revealed further progenitor cell diversification, including different subpopulations of Hes1+ and/or Hes5+ RG, and Dll1+ and/or Dll3+ INPs. Thus, the embryonic progenitor niche includes a network of dynamic cell-cell interactions, using different combinations of Notch signaling molecules to maintain and likely diversify progenitor pools.
哺乳动物新皮质祖细胞生态位由多种神经上皮细胞、放射状胶质(RG)和中间神经祖细胞(INP)组成。以前的活细胞成像实验已证明对于识别这些不同的祖细胞群体至关重要,尤其是 INP,其通过在分化为新神经元之前进行额外的增殖来放大神经输出。INP 还通过充当 Delta 样 1(Dll1)的来源来为 RG 池提供反馈,Dll1 是激活相邻细胞 Notch 信号的关键配体,这是维持 RG 身份的一种熟知的机制。虽然在分子水平上已经了解了 Dll1-Notch 信号的很多信息,但对于这种依赖于细胞-细胞接触的反馈如何在细胞水平上传递却知之甚少。为了研究 RG 和 INP 如何相互作用以传递 Notch 信号,我们使用高分辨率活细胞多光子显微镜(MPM)直接观察细胞间相互作用和动态,同时结合胚胎小鼠脑器官切片中新皮质神经干细胞生态位中的 Notch 通路特异性报告基因。我们发现 INP 和 RG 通过动态和瞬时延长的过程相互作用,有些显然是长程的(从侧脑室延伸到脑室区),有些是短程的(丝状伪足样)。RG 和 INP 的基因表达谱分析揭示了进一步的祖细胞多样化,包括 Hes1+和/或 Hes5+RG 的不同亚群,以及 Dll1+和/或 Dll3+INP。因此,胚胎祖细胞生态位包括一个动态细胞-细胞相互作用网络,使用不同的 Notch 信号分子组合来维持和可能多样化祖细胞库。