Materials Department, University of California, Santa Barbara, California 93106, USA.
Nano Lett. 2013 Jun 12;13(6):2895-901. doi: 10.1021/nl4012563.
Arrays of metallic nanostructures embedded within a semiconducting matrix are of great interest for applications in plasmonics, photonic crystals, thermoelectrics, and nanoscale ohmic contacts. We report a method for growing single crystal arrays of semimetallic vertical and horizontal ErSb nanorods, nanotrees, and nanosheets embedded within a semiconducting GaSb matrix. The nanostructures form simultaneously with the matrix and have epitaxial, coherent interfaces with no evidence of stacking faults or dislocations as observed by high-resolution transmission electron microscopy. By combining molecular beam epitaxy growth and in situ scanning tunneling microscopy, we image the growth surface one atomic layer at a time and show that the nanostructured composites form via a surface-mediated self-assembly mechanism that is controlled entirely at the growth front and is not a product of bulk diffusion or bulk segregation. These highly tunable nanocomposites show promise for direct integration into epitaxial semiconductor device structures and also provide a unique system in which to study the atomic scale mechanisms for nucleation and growth.
嵌入半导体矩阵中的金属纳米结构阵列在等离子体学、光子晶体、热电学和纳米级欧姆接触等应用中具有重要意义。我们报告了一种在半导体 GaSb 矩阵中生长垂直和水平 ErSb 纳米棒、纳米树和纳米片的单晶体阵列的方法。这些纳米结构与基质同时形成,具有外延、相干界面,没有观察到位错或层错的证据,高分辨率透射电子显微镜观察到。通过结合分子束外延生长和原位扫描隧道显微镜,我们可以逐原子层成像生长表面,并表明纳米结构复合材料是通过表面介导的自组装机制形成的,该机制完全由生长前沿控制,而不是体扩散或体分凝的产物。这些高度可调的纳米复合材料有望直接集成到外延半导体器件结构中,并且还为研究成核和生长的原子尺度机制提供了独特的系统。