Suppr超能文献

高应变量 Ge/InAlAs 纳米复合材料。

Highly tensile-strained Ge/InAlAs nanocomposites.

机构信息

Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA.

Department of Engineering Physics, École Polytechnique de Montreal, Montreal, Quebec, Canada H3C 3A7.

出版信息

Nat Commun. 2017 Jan 27;8:14204. doi: 10.1038/ncomms14204.

Abstract

Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/InAlAs (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material.

摘要

由于多种材料相结合时可能出现的新颖特性,自组装纳米复合材料得到了广泛的研究。使用晶格失配成分生长外延纳米复合材料也能够实现应变工程,这可以进一步增强材料的性能。在这里,我们报告了通过自发相分离自组装生长具有高拉伸应变的 Ge/InAlAs(InAlAs)纳米复合材料。透射电子显微镜显示,在没有扩展缺陷的情况下,高密度的单晶锗纳米结构在 InAlAs 中完全嵌入,拉曼光谱显示锗纳米结构中的双轴拉伸应变为 3.8%。我们还表明,通过改变基质材料的晶格常数,可以将锗纳米结构中的应变调节到 5.3%,这说明了外延纳米复合材料在应变工程方面的多功能性。然后讨论了光致发光和电致发光的结果,以说明基于这种纳米复合材料实现器件的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/106f/5290139/47f929f65d66/ncomms14204-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验