Materials Department, University of California-Santa Barbara, CA 93106–5050, USA.
Adv Mater. 2011 May 24;23(20):2377-83. doi: 10.1002/adma.201100449.
In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:In(x)Ga(1−x)Sb as a promising p-type thermoelectric material. Nanostructures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By co-doping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μ m thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.
在这项工作中,我们展示了通过分子束外延(MBE)生长的用于热电应用的半导体-半导体纳米复合材料的研究。我们研究了几种不同的 III-V 半导体,其中嵌入了半金属稀土族 V(RE-V)化合物,但这里重点关注作为有前途的 p 型热电材料的 ErSb:In(x)Ga(1−x)Sb。RE-V 化合物的纳米结构形成并嵌入在 III-V 半导体基体中。通过用适当的掺杂剂共掺杂纳米复合材料,已经制备了用于热电应用的 n 型和 p 型材料。热电性能得到了优化,以提高热电器件性能。已经制造和测量了使用 50 μm 厚含 Er 纳米复合材料的分段热电功率发生器模块。讨论了用于热电的不同稀土元素的研究。