Suppr超能文献

基于边缘保持图像去噪和聚类的成像质谱数据空间分割。

Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering.

机构信息

Center for Industrial Mathematics, ZeTeM, University of Bremen, 28334 Bremen, Germany.

出版信息

J Proteome Res. 2010 Dec 3;9(12):6535-46. doi: 10.1021/pr100734z. Epub 2010 Nov 15.

Abstract

In recent years, matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry has become a mature technology, allowing for reproducible high-resolution measurements to localize proteins and smaller molecules. However, despite this impressive technological advance, only a few papers have been published concerned with computational methods for MALDI-imaging data. We address this issue proposing a new procedure for spatial segmentation of MALDI-imaging data sets. This procedure clusters all spectra into different groups based on their similarity. This partition is represented by a segmentation map, which helps to understand the spatial structure of the sample. The core of our segmentation procedure is the edge-preserving denoising of images corresponding to specific masses that reduces pixel-to-pixel variability and improves the segmentation map significantly. Moreover, before applying denoising, we reduce the data set selecting peaks appearing in at least 1% of spectra. High dimensional discriminant clustering completes the procedure. We analyzed two data sets using the proposed pipeline. First, for a rat brain coronal section the calculated segmentation maps highlight the anatomical and functional structure of the brain. Second, a section of a neuroendocrine tumor invading the small intestine was interpreted where the tumor area was discriminated and functionally similar regions were indicated.

摘要

近年来,基质辅助激光解吸/电离(MALDI)-成像质谱已成为一种成熟的技术,可实现重现性高分辨率的测量,以定位蛋白质和小分子。然而,尽管这项技术取得了令人瞩目的进步,但仅有少数几篇论文涉及 MALDI-成像数据的计算方法。为了解决这个问题,我们提出了一种新的 MALDI-成像数据集的空间分割方法。该方法根据相似性将所有光谱聚类到不同的组中。这种分区由一个分割图表示,可以帮助理解样本的空间结构。我们分割方法的核心是对对应于特定质量的图像进行保持边缘的去噪,这可以减少像素间的可变性,并显著改善分割图。此外,在应用去噪之前,我们通过选择至少出现在 1%的光谱中的峰来减少数据集。高维判别聚类完成了该过程。我们使用提出的流水线分析了两个数据集。首先,对于大鼠脑冠状切片,计算出的分割图突出了大脑的解剖和功能结构。其次,对侵袭小肠的神经内分泌肿瘤的切片进行了分析,其中区分了肿瘤区域,并指出了功能相似的区域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验