National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
Virol J. 2013 May 23;10:158. doi: 10.1186/1743-422X-10-158.
Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor.
We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknown virus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements.
The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide viruses and other classes of capsid-less mobile elements.
基因组学和宏基因组学的最新进展揭示了病毒和其他自私遗传元件的显著多样性。特别是,巨型病毒被证明拥有自己的可移动元件,包括噬病毒体、寄生在 mimiviridae 科巨型病毒上的小型病毒,以及转位病毒,这是一种独特的线性质粒。已知的一种噬病毒体称为 Mavirus,是巨型 Cafeteria roenbergensis 病毒的寄生虫,与 Polinton( Maverick)家族的大型真核自我复制转座子有几个基因共享,有人提出,Polintons 是从类似于 Mavirus 的祖先进化而来的。
我们对已有的噬病毒体基因组进行了全面的系统基因组分析,并追踪了噬病毒体与其他自私遗传元件之间的进化联系。噬病毒体的基因组成和基因组组织的比较揭示了 6 个保守的核心基因,这些基因以部分保守的数组排列。对那些核心噬病毒体基因进行的系统发育分析,其中包括成熟蛋白酶和包装 ATP 酶,检测到了足够多样性的噬病毒体之外的同源物,支持噬病毒体的单系性。该分析的结果与 polintons 起源于类似于 Mavirus 的制剂不符,而是表明 Mavirus 是通过 polinton 和未知病毒之间的重组进化而来的。总之,噬病毒体、polintons、一个独特的 Tetrahymena 转座元件 Tlr1、转位病毒、腺病毒和一些噬菌体形成了一个进化关系网络,由重叠的共享基因集合维系在一起,似乎代表了病毒和移动元件这个巨大总网络中的一个独特模块。
噬病毒体和相关遗传元件的系统基因组分析结果与病毒世界网络状进化的概念一致,并强调了真正的病毒和其他无衣壳移动元件类之间的多种进化联系。