Suppr超能文献

基于时空线性混合效应模型的纵向神经影像数据的单变量分析。

Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School/Massachusetts General Hospital, Charlestown, MA, USA.

Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School/Massachusetts General Hospital, Charlestown, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Neuroimage. 2013 Nov 1;81:358-370. doi: 10.1016/j.neuroimage.2013.05.049. Epub 2013 May 20.

Abstract

We present an extension of the Linear Mixed Effects (LME) modeling approach to be applied to the mass-univariate analysis of longitudinal neuroimaging (LNI) data. The proposed method, called spatiotemporal LME or ST-LME, builds on the flexible LME framework and exploits the spatial structure in image data. We instantiated ST-LME for the analysis of cortical surface measurements (e.g. thickness) computed by FreeSurfer, a widely-used brain Magnetic Resonance Image (MRI) analysis software package. We validate the proposed ST-LME method and provide a quantitative and objective empirical comparison with two popular alternative methods, using two brain MRI datasets obtained from the Alzheimer's disease neuroimaging initiative (ADNI) and Open Access Series of Imaging Studies (OASIS). Our experiments revealed that ST-LME offers a dramatic gain in statistical power and repeatability of findings, while providing good control of the false positive rate.

摘要

我们提出了一种线性混合效应(LME)建模方法的扩展,用于对纵向神经影像学(LNI)数据进行单变量分析。所提出的方法称为时空 LME 或 ST-LME,它建立在灵活的 LME 框架之上,并利用了图像数据中的空间结构。我们通过广泛使用的大脑磁共振成像(MRI)分析软件包 FreeSurfer 实例化了 ST-LME,用于分析皮质表面测量值(例如厚度)。我们验证了所提出的 ST-LME 方法,并使用来自阿尔茨海默病神经影像学倡议(ADNI)和开放获取成像研究系列(OASIS)的两个脑 MRI 数据集进行了定量和客观的实证比较。我们的实验表明,ST-LME 提供了统计功效和发现重复性的显著提高,同时还能很好地控制假阳性率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验